
(helloworld.cc)1PLUS

Issue 28 Nov 2025 helloworld.cc

INCLUSIVE PROGRAMMING PEDAGOGIES • PRIMM FOR YOUNG LEARNERS • GRANT WRITING • BEBRAS CHALLENGE
ASTRO PI • SPATIAL COMPUTING • WHY DO WE TEACH COMPUTING? • FUTURE CAREERS • OFFLINE PROGRAMMING
SEMANTIC WAVES • EDUCATOR REFLECTIONS • ‘REEL’ PROBLEMS • AI UNPLUGGED ACTIVITIES • RURAL AI LESSONS

THE MAGAZINE FOR COMPUTING
& DIGITAL MAKING EDUCATORS

PROGRAMMING LANGUAGE TRANSFER
Guiding students from block- to text-based coding

PROGRAMMING THE FUTURE
Programming as an act of creativity

BEYOND THE VIBE
Reframing AI tools for coding friction

Discover more at: rpf.io/exp-cs-hw28

Experience CS

Experience CS empowers educators of elementary and middle
school students (aged 8 to 14) to teach computer science
through a standards-aligned curriculum that integrates CS
concepts into core subjects like maths, science, languages,
and the arts.

Created by educators for educators, Experience CS includes:

• Ready-to-use lesson plans, educator resources, and classroom materials.

• Creative projects using a version of Scratch built especially for schools.

• Simple and intuitive learning management features to track students’
progress and manage classroom assignments.

• Professional development opportunities to help you feel confident
teaching CS. No prior experience needed.

A free integrated curriculum
for computer science

MANNI CHEUNG
During his master’s degree, Manni’s
research asked: what happens when
students use AI to help them code, but
they end up learning less? Read about
his findings on pages 16–17.

ZACHARY FLOWER
Zachary shares three of his tried and
tested unplugged activities to get
students to rediscover the power of
physical thinking in a digital world. Find
out more on pages 52–53.

FEATURED THIS ISSUE

LEONTAE GRAY WARD
Leontae is a STEM and computer
science educator based in Indiana,
USA. On pages 48–49, she discusses
how CPD upgraded her approach to
programming instruction.

e take for granted all the clever,
creative programming that goes into
the technology we use in our daily

lives. But how do we best teach programming
to support the next generation of innovators?
And how do we support you, the amazing
educators who are also trying to keep pace
with the advancements in computer science,
and who want to inspire their students?

We hope that Hello World can help with just
that. The theme of this magazine issue — and of
our new podcast mini series — is programming.
This issue is packed with insightful research,
practical advice, and thoughtful ways to best
teach programming in your classroom.

In this issue, Simon Peyton Jones discusses
programming the future, and how programming
is really an act of creativity (pages 22–23). We
also have an article from Ben Schafer and
Sarah Diesburg, sharing reflections from K–12
teachers on their experience of learning and
teaching programming (pages 42–45). And
finally, Kala Grice-Dobbins shares her step-by-

step guide for writing a successful grant
application (pages 74–75), which can apply to
anyone around the world.

We’d love to hear your thoughts on Hello
World. Subscribers will soon receive our annual
survey by email. Please take five to ten minutes
to share how you use Hello World and how we
can improve our magazine and podcast to
better support your
work. Hello World is
created by educators,
for educators, and your
feedback helps us
shape its future.

Meg Wang
Editor

HELLO, WORLD!

Hello World is published by the Raspberry Pi
Foundation, 37 Hills Road, Cambridge, CB2
1NT. The publisher, editor, and contributors
accept no responsibility in respect of any
omissions or errors relating to skills, products,
or services referred to in the magazine.
Except where otherwise noted, content in this
magazine is licensed under a Creative Commons
Attribution-NonCommercial-ShareAlike 4.0
Unported (CC BY-NC-SA 4.0).

This magazine is printed on paper sourced from
sustainable forests and the printer operates an
environmental management system which has
been assessed as conforming to ISO 14001.

W
EDITORIAL
Editor
Meg Wang
Contributing Editor
Dominick Sanders
Subeditors
Louise Richmond and Gemma Coleman
Subscriptions
Dan Ladbrook
Social Media
Sean Sayers

DESIGN
criticalmedia.co.uk
Designer
Dougal Matthews
Photography
The Raspberry Pi Foundation,
Adobe Stock
Graphics
Rob Jervis
Cover
© MUTI

CONTRIBUTORS
James Abela, Sophie Ashford, Ross Barrett, Marc
Berges, Neil Brown, Manni Cheung, Michael Conterio,
Mark Crane, Andrew Csizmadia, Sethi De Clercq,
Chidi Duru, Sarah Diesburg, Esther Mmbai Diera,
Diane Dowling, Ryan Etheridge, Catherine Elliott,
Zachary Flower, Tracy Gardner, Leontae Gray Ward,
Kala Grice-Dobbins, Philippa Hanman, Justin Heath,
Jeremy Hieb, Laura James, Simon Peyton Jones,
Lauren Kisser, Michael Kölling, Annabel Lindner,
Dorian Love, Thomas Mason, Michaela Mueller-
Unterweger, Kaye North, Jigar Patel, Tess Ramsey,
Ben Schafer, Sue Sentance, Crystal Sheldon, Bonnie
Sheppard, Ethel Tshukudu, Pierre Weill-Tessier

helloworld.cc 3

Hello World is the
official magazine
of the Raspberry
Pi Foundation

Contributing Partner

SUBSCRIBE

IN PRINT

FOR FREE
TURN TO PAGE

83

Supported by

helloworld.cc4

CONTENTS

36 	� A-LEVEL PROJECTS
How to support students when they
choose a programming language for
their A-level project

38 	� PRIMM AND
PROPER VIBE CODING
What happens when students bring
ChatGPT, GitHub, and Canva into the
classroom?

42 	� TEACHING AND
LEARNING PROGRAMMING
Educator reflections on learning to
program while teaching programming
to students

46 	� INTEGRATING GENAI
An introduction to programming course
which asks how we should work with,
and not against, generative AI

48 	� BIT BY BIT
How CPD upgraded an educator’s
approach to programming instruction

6 	� NEWS
Astro Pi; celebrating Coolest Projects
2025; Bebras Challenge 2025; ten years
of Moonhack

14 	� INCLUSIVE PROGRAMMING
PEDAGOGIES
Effective teaching methods to include
learners with additional needs

16 	� BEYOND THE VIBE
How AI tools might undermine learning
unless we design for friction

18 	� FLARE: A FRAMEWORK FOR
LEARNING ABOUT RELATIONAL
ELEMENTS
Code comprehension through familiar
strategies

20 	� WHY DO WE TEACH COMPUTING?
Computing education research
identifies four main perspectives on
what CS education is and what it is for

22 	� PROGRAMMING THE FUTURE
What programming is and where
it’s going in the age of AI

24 	� BEGINNING WITH SCRATCH
A new instructor’s joy in learning to
program in Scratch

26 	� FROM BLOCK- TO
TEXT-BASED CODING
What programming language
transfer teaches us about helping
students to transition

29 	� STRYPE PROGRAMMING
ENVIRONMENT
Simplifying Python for beginners
with intuitive frame-based editing
and interactive graphics

34 	� JAVA’S LATEST FEATURES
Why every student should know
how to use Java to unlock their
future

PROGRAMMING
What is the future of programming,
and how can educators best teach it?

COVER FEATURES22–49

NEWS, FEATURES, AND OPINION

helloworld.cc 5

60 	� BRIDGING THE
ABSTRACTION GAP
Using semantic waves to help
scaffold problem-based learning in
computer science education

62 	� THE THRILL OF THE
JOURNEY IN CODING
Tips and activities to introduce the
PRIMM approach for young digital
explorers

50 	� FUTURE CAREERS
How educators can help their
students prepare for industry with
Amazon Future Engineer UK

52 	� NO SCREENS, NO PROBLEM
Rediscovering the power of physical
thinking in a digital world

58 	� RAISING CODERS
IN THE AGE OF AI
In a rural part of the USA, a family
uses AI as a tool for coding,
problem-solving, and meaningful
projects

LEARNING

66 	� SEQUENCING
A lesson plan about understanding the
precise nature of the instructions that
computers need to execute

70 	� DEMYSTIFYING AI
An open educational resource collection
of unplugged AI teaching activities

RESOURCES & LESSON PLANS

40 54

32

SUBSCRIBE83

©
 M

on
ke

y B
us

ine
ss/

sto
ck

.ad
ob

e.c
om

©
 Xa

vie
r L

ore
nzo

/st
oc

k.a
do

be
.co

m

©
 Al

esi
aK

an
/st

oc
k.a

do
be

.co
m

A HISTORY OF
PROGRAMMING LANGUAGES
The use of programming
languages in UK CS education
and the global impact of Python

OFFLINE PROGRAMMING
How every student can learn
AI concepts regardless of
access to the internet

THE ‘REEL’ PROBLEM
IN CLASSROOMS
How short-form video apps are
reshaping student attention and
engagement in computing classrooms

CONVERSATION
56 	� CODE EDITOR FOR EDUCATION

Two teachers tell us about how
they use our text-based coding
environment in the classroom

74 	� GRANT WRITING
How to unlock funding for your
classroom

76 	� MEET THE CODE CLUB
A conversation with a Code Club for
Deaf creators in Nigeria

78 	� SELF-PORTRAITURE THROUGH
CODE
Embracing artistry in computer
science education

79 	� BEBRAS
A fun computational thinking
challenge

80 	� EVOLVING COMPUTING
What is spatial computing?

82 	� START AS YOU MEAN TO GO ON
Tips for a strong start to the school year

helloworld.cc6

Explore how the challenge has evolved over the past ten years into a
STEM success story across Europe and beyond

NEWS FEATURE

n 2015, a bold and brilliant idea
launched into orbit (literally!). The

Astro Pi Challenge, a European Space
Agency (ESA) Education project run
in collaboration with the Raspberry Pi
Foundation, set out to inspire the next
generation of programmers and space
scientists by giving them the unique
opportunity to write code that runs aboard
the International Space Station (ISS). Now,
ten years on, we celebrate a decade of
creativity and education that has reached
thousands of young people and their
mentors across ESA member states.

A mission to expand coding
capabilities
The European Astro Pi Challenge, aimed at
enhancing computing and digital making
skills among young people, originated
as the Astro Pi UK competition with the
UK Space Agency. Specially modified
Raspberry Pi computers with Sense HATs
were delivered to the ISS, by British ESA
astronaut Tim Peake during his 2015
Principia mission, and students’ programs
were run with support from the crew.

Building on its success, ESA expanded
the concept to the entire European region,
launching the first European Astro Pi
Challenge in 2016/2017.

Mission Zero, introduced in 2017/2018
alongside the original Mission Space Lab,
offered a simpler activity for beginners:
programming an Astro Pi to sense ISS
temperature and display a message, all
online without extra hardware. Its resources
became available in 19 languages.

In 2021, new ‘Mark II’ Astro Pis were
sent to the ISS, featuring two Raspberry
Pi model 4s, a High-Quality Camera, and a
custom Sense HAT with new sensors.

The 2022/23 Mission Zero shifted to a
pixel art activity, where participants created
8x8 pixel images and animations using
luminosity sensors to adjust background
colours. A new online editor was introduced
for direct code submission.

In 2023, Mission Space Lab moved
away from distributing Astro Pi kits,

instead providing the Astro Pi Replay
tool, a simulated environment replaying
ISS data and images. This gave young
people unlimited access to unique earth
observation images and data for testing
their programs, captured by teams from
previous years.

These missions aren’t just educational.
They cultivate problem-solving,
collaboration, and a love for discovery to
empower young people and their mentors.
They also demonstrate how computer
science and space exploration intersect in
powerful and tangible ways.

Over the past ten years, the Astro Pi
Challenge has engaged over 150,000
participants from more than 25 countries.

Celebrating impact: inspiring a
generation
Since inception, the challenge has
established itself as an opportunity for
teachers to encourage students’ enthusiasm
for tech and team work. This has been
demonstrated at St Joseph’s School in
Rush, Ireland, where there is a strong focus
on making opportunities to engage with
computing technologies accessible to all
(helloworld.cc/st-joseph).

On hearing about this exciting coding
challenge, teacher Danny introduced it
to his computer science class, as well
as extending an open invitation to all St
Joseph’s students. Lots of students signed
up. Collaborating on Astro Pi projects has

I

Philippa Hanman

ASTRO PI:
INSPIRING YOUNG CREATORS
FOR A DECADE OF DISCOVERY

n �Sophie Adenot, ESA astronaut, is our Astro Pi ambassador

helloworld.cc 7

enabled young people at St Joseph’s to
team up and uncover their strengths, and
foster a strong community who have gone
on to expand their digital skills beyond the
curriculum, instilled with the belief that they
can achieve anything.

The Astro Pi Challenge’s tenth
anniversary is not just a milestone, it’s a
testament to what happens when young
people are given the tools and the trust
to do extraordinary things. Across Europe
and beyond, countless students have had
their first taste of coding, data analysis,
and scientific experimentation through this
initiative. Many have gone on to pursue
studies and careers in science, technology,
engineering, and mathematics (STEM),
inspired by the knowledge that their work
reached outer space.

“The idea that your code could run in
space is simply amazing. It’s a fascinating
and inspiring experience. The thought of
sending a friendly message to astronauts
and visitors aboard the ISS — a small
gesture to connect Earth and space —
it’s an incredible feeling. Knowing that

something I created might motivate other
kids to explore coding and space is truly
special.” — Team Tony Pi

Educators, too, have found a powerful
teaching tool in the Astro Pi Challenge.
It brings together curriculum goals with
real-world applications in a way few other
projects can. Teachers often report that the
challenge sparks enthusiasm in students
who might otherwise feel disconnected
from science or coding.

“Participating in Mission Space Labs
offers students a great opportunity to work
with the International Space Station, to see
the Earth from above, to challenge them to
overcome the terrestrial limits.” — Mission
Space Lab mentor

What can we expect from the
2025/26 Astro Pi Challenge?
This year we are excited to welcome ESA
astronaut Sophie Adenot as our Astro Pi
ambassador. She was awarded the French
National Order of Merit (Chevalier) in 2022
and the medal of the French National
Assembly honouring her actions as an

inspiring ambassador for gender equality in
sciences in 2021. She is scheduled to fly to
the ISS, with the mission currently planned
for 2026.

There are lots of helpful resources
available, including step-by-step project
guides, making it easy to engage your
students in computer science and space
exploration. Ten years ago, the idea of a
school child’s code running in space might
have seemed like science fiction, yet today,
it’s an annual reality for thousands of
students!

Both Mission Zero and Mission Space
Lab are open for entries. Take part in this
milestone year by visiting astropi.org.

Astro Pi 2025/2026 is now open!
16 February 2026: closing date for Mission
Space Lab
23 March 2026: closing date for Mission Zero

IMPORTANT DATES

helloworld.cc8

Every year, Coolest Projects celebrates young digital creators around the
world with an online showcase and multiple in-person events

NEWS FEATURE

oolest Projects offers a platform
for young people to celebrate a

shared passion for computer science and
get involved in STEM in a fun and inclusive
environment. All projects are welcomed —
from big to small, beginner to advanced,
work in progress to finished creations.

For 2025, the Raspberry Pi Foundation
organised an online showcase and in-
person events in Ireland, the UK, and the

USA. An in-person event was held in
India for the first time, in Hyderabad this
September.

These events were supported by partner-
activated celebrations throughout the
year, with more still scheduled for later in
2025. It was so great to see the community
gathering all over the world, including in Sri
Lanka, Belgium, South Africa.

The online showcase was celebrated

with a livestream in June, championing the
11,980 participants from 41 countries who
entered 5,952 tech projects between them.
Each project demonstrated creativity and a
commitment to learning.

Check out some of the highlights
from what has been an incredible year
for Coolest Projects. We look forward
to returning in 2026 and continuing to
celebrate young creators!

C

Sophie Ashford

YOUNG MINDS, BIG IDEAS
A CELEBRATION OF COOLEST PROJECTS 2025

COOLEST PROJECTS
IRELAND

COOLEST PROJECTS
IRELAND

COOLEST PROJECTS
IRELAND

COOLEST PROJECTS
UK

COOLEST PROJECTS
USA

COOLEST PROJECTS
IRELAND

helloworld.cc 9

Coolest Projects Ireland
In March, young creators gathered in Dublin
for Coolest Projects Ireland. This event
showcased the creativity and problem-solving
skills of over 80 participants from across
Northern Ireland and the Republic of Ireland.

Coolest Projects USA
In April, Coolest Projects USA took place at
the Science Museum of Minnesota. Around
40 young people showcased their projects,

sharing their work with friends, family, and
the wider coding community. With hands-on
tech activities and project demonstrations,
the day was packed with energy.

Coolest Projects UK
At this event held in Bradford in May, over
170 young digital makers from across
the UK gathered for Coolest Projects UK.
Creators, families, mentors, and even some
Scout troops joined in for a day of fun.

Global partners: spreading the
Coolest Projects spirit
We’re incredibly fortunate to collaborate
with amazing partners worldwide. These
dedicated teams are passionate about
bringing the Coolest Projects spirit to their
communities. From Indonesia to Belgium
to Nigeria, creators globally are gathering,
sharing ideas, and celebrating their creativity.

Thank you to our sponsors
Support from our Coolest Projects sponsors
means we can make the online showcase and
in-person events inspiring experiences for the
young people taking part. We want to say
a big thank you to our Champion Sponsors
Broadcom Foundation, Allianz, Amazon
Future Engineer, Meta, and Qube RT.

To learn more, visit coolestprojects.org.

EACH PROJECT DEMONSTRATED CREATIVITY
AND A COMMITMENT TO LEARNING“

COOLEST PROJECTS
UK

COOLEST PROJECTS
UK

COOLEST PROJECTS
UK

COOLEST PROJECTS
USA

COOLEST PROJECTS
USA

helloworld.cc10

The Bebras Challenge is back for 2025, and is an engaging stepping stone to coding for your learners

NEWS FEATURE

he Bebras Challenge (bebras.org)
is recognised and acknowledged

as the world’s largest computing challenge
with nearly 4 million learners in 85
countries participating in the last school
year. In November 2024, over 467,000
learners participated in the UK Bebras
Challenge (bebras.uk).

Connecting to key programming
concepts
When Bebras tasks are created,
they are classified by members of
the international Bebras community
against at least one of five computing
domains. These domains agreed by
the Bebras community are: Algorithms
and Programming, Data Structures and
Representations, Computer Processes
and Hardware, Communications and
Networking, and Interactions, Systems
and Society. In a 2017 paper (helloworld.
cc/dagiene), Dagienė, Sentance, and
Stupurienė identified programming topics
from Bebras tasks that members of the
international Bebras community had
designed, developed, refined, and possibly
used in their own country’s Bebras
Challenge from 2004 to 2016. They
identified 45 topics within the Algorithms
and Programming domain (Table 1).

Now you try!
Let’s explore some
Bebras tasks that
introduce or reinforce
programming
concepts.

Example 1:
introducing
programming concepts
The Burger Recipe task can be used as an
introduction to the programming concepts
of either a sequence of instructions or
constraint checking.

Burger Recipe
Jessica is making burgers according to the
following rules:

1. �The sauce should be right above the meat
2. �Meat and cheese should be below the

pickles, lettuce, and onions
3. �Onions should not be in contact with the

buns

Question
Which burger in Figure 1 is correctly made
according to the rules?

 In this task, learners are introduced to
the concept of a constraint satisfaction
problem, in which they have to find a
solution which satisfies the constraints they
are presented with. A constraint is a rule or
limitation that restricts the possible values
or configurations. In computer science,
finding out whether a solution obeys all the
given rules is called constraint checking.

Example 2: debugging
In the Maze Runner task, learners are
introduced to the concept of debugging
code which currently does not work correctly
(‘smelly code’) to code that functions correctly.

Maze Runner
A robot has to move from the red square to
the green square in Figure 2. If you press
the Run button, you will see the program
has an error!

T

Andrew Csizmadia

BEBRAS CHALLENGE

Domain

Algorithms and
Programming

Keywords

Algorithm; Binary search; Boolean algebra; Breadth-first search; Brute-force search; Bubble
sort; Coding; Computational complexity; Constants; Constraints; Debugging; Depth-first search;
Dijkstra’s algorithm; Dynamic programming; Divide and conquer; Encapsulation; Function; Greedy
algorithm; Heuristic; IF conditions; Inheritance; Iteration; Kruskal’s algorithm; Logic gates; Loop;
Maximum flow problem; Objects; Operations AND, OR, NOT; Optimisation; Parameters; Prim’s
algorithm; Procedure; Program; Programming language; Program execution; Quick sort; Recursion;
RSA algorithm; Shortest path; Searching; Sorting; Travelling salesman problem; Variables.

n Figure 1 Burger Recipe task

n Table 1 Topics within the Algorithms and Programming domain of Bebras tasks

helloworld.cc 11

Task
Fix the program to get the robot to its green
square.

In this task, learners are looking for a
mistake in the code they have been given.
This is called debugging, which is an
important skill for computer programmers
to develop.

Example 3: code optimisation
In the Shortest Program task, learners are
encouraged to consider optimising code
to make the program more efficient and
execute a program with a set number of
blocks. This task introduces learners to
the programming construction of iteration
(repetition).

Shortest Program
The program shown in Figure 3 drives a
triangular robot.

Following these instructions, the robot
drives in a small square twice and ends up
back where it started. (You can try it out if
you wish, following the code in Figure 4.)
The whole program uses five code blocks
(three purple, one green, one grey).	

Task
Write a program that gets the robot to the
green square using twelve blocks or less.

This task is about spotting patterns
and using loops to solve a problem.

Pattern recognition (spotting patterns) in
computer science and programming is key
to determining appropriate solutions to
problems and knowing how to solve certain
types of problems. Recognising a pattern
helps break down the problem and also
build a construct as a path for the solution.

Expanding your toolkit
The previous three examples indicate
how Bebras tasks can be used to
either introduce, refresh, or reinforce
programming concepts with learners.
The quiz facility on the online UK Bebras
platform allows teachers to create a quiz
on a topic by selecting related Bebras

tasks implemented on the platform
and then share this online quiz for your
learners to attempt. We hope that you
might consider using a programming-
related Bebras task as part of your
teaching coding toolkit.

How to get your school involved
If your school is neither a UK-based school
nor teaches a UK-based curriculum, then
visit bebras.org/countries to discover if
the Bebras Challenge is organised in your
country and who to contact about having
your learners participate in this year’s
Bebras Challenge.

If you are a UK-based education
establishment or teach a UK-based
curriculum, then visit bebras.uk for more
information regarding the UK Bebras
Challenge and how to register your school.
This is so that your learners can participate
in this year’s UK Bebras Challenge. Once
you’ve registered, you’ll get access to the
entire UK Bebras back catalogue of Bebras
tasks, allowing you to create custom
quizzes for your students to tackle at any
time throughout the year. These quizzes

are self-marking, and
you can download
your students’ results
to keep track of their
progress. Schools
have found these
questions perfect for
enrichment activities,
end-of-term quizzes,
lesson starters, and
even full lessons to
develop computational
thinking skills.
Join for free at bebras.
uk/admin.

In the UK, the challenge is open to all young people
aged 6 to 19. Each participant has 45 minutes to
tackle a series of interactive tasks, designed to
encourage logical thinking and problem-solving
skills appropriate for their age group. The challenge

is conducted online, and tasks are marked
automatically by our competition system.
The tasks are designed to allow every student the
opportunity to showcase their potential, whether
they excel in maths or computing, or not.

BEBRAS CHALLENGE 2025
This year’s challenge will take place 10–21 November 2025.

n Figure 3 Program code for Shortest Program task

n Figure 4 Shortest Program task

n Figure 2 Maze Runner task

helloworld.cc12

Blast off with Moonhack this year, celebrating ten years of
coding challenges for young people

NEWS FEATURE

oonhack (moonhack.com) is a
free international event run by

Code Club Australia (codeclubau.org)
that brings kids aged 8–15 together from
across the world for two weeks of coding
fun. Over the last nine years, Moonhack
has seen over 275,000 children coding
Moonhack projects, with each new annual
challenge presenting a unique theme
about the world or space.

Moonhack’s 10th birthday!
Moonhack began in 2016 as an initiative
by Code Club Australia to get as many
kids as possible coding on the same day.

What started as a local experiment quickly
captured global attention — and in its
first year, Moonhack set a world record
with over 10,000 young people coding
simultaneously. The achievement was a
powerful statement: coding is not only an
accessible endeavour, but also an exciting
and unifying one for kids everywhere.

In 2017, Moonhack claimed another
world record — this time, for the number of
kids coding in one day, recording 28,575
children from 56 countries and 600 Code
Clubs. In the early days of Moonhack,
there were one or two projects for the
day-long challenge. This has grown to six
new projects for the challenge, with the
introduction of micro:bits and design briefs.
Moonhack also now takes place over two
weeks, ensuring everyone can take part in
the fun. Will you be joining in this year?

Featured projects
In 2025, for Moonhack’s 10th birthday,
there are six new space-themed birthday
coding projects on offer. There is a coding
project to suit everyone taking part
(moonhack.com/projects):
n	� Birthday blast off! is a Scratch project for

beginners. Featuring the voices of young
people from Code Clubs around the world,
this project is an animation that has a
rocket countdown in different languages
to blast off to a cake-shaped planet.

n	� Lunar laughs is a Scratch project suitable
for both beginners and experienced
users. The project has three steps. Step
1 is for beginners and includes setting

up a birthday character to tell five space-
themed jokes. Coders can finish their
project there, or move on to Step 2 which
introduces animation for the jokes. This
could be the end of the project, or coders
can continue to Step 3, which introduces
lists and variables to create a random
order for the character to tell the jokes.

n	� Puzzle party is a Scratch project
suitable for experienced programmers.
It asks participants to code a jigsaw
puzzle by using blocks such as
variables and absolute value, and by
creating new blocks.

n	� Partybit:mix is a project that turns a
micro:bit into a DJ mix board. Young
people will program the micro:bit to
store a list of music and a list of sound
effects that can be combined to create
a birthday playlist.

n	� Astrolock uses Python to create an
escape room in a space shuttle: can
coders escape the shuttle before it
takes off? Coders can complete just
one of the three steps or continue to
the next, increasing the difficulty of the
program. Step 1 asks participants to
program a simple escape room, with one
key and one way out. Step 2 involves
the condition of the key being found
in a random room. Step 3 includes
programming to check multiple rooms
and to add puzzles for each room.

n	� Moonhack X is this year’s design project.
Coders can choose any programming
language and design a project in their
own way that shares their Moonhack

M

Kaye North

MOONHACK 2025: A GLOBAL
BIRTHDAY CHALLENGE

helloworld.cc 13

experience. Coders could create a game
about Moonhack, an animation about
their journey with Moonhack, or anything
else that they decide on!

Are you up for the challenge?
Getting involved in Moonhack is easy, free,
and open to everyone — whether you’re
a teacher, Code Club leader, parent, or
simply someone passionate about helping
young people code. Join the birthday
celebration this year between 14 and 30
October by visiting moonhack.com and
registering your group, class, or club.

Once you have registered, decide on
the projects that you will offer to your

coders. All of the projects include step-by-
step guides, translations, and classroom
resources to make planning simple. There
are also codealong videos for some of the
projects, and blog posts to provide extra
information and showcase the young
people who tested the projects. You’ll
also find free downloadable resources
such as posters, party bunting, unplugged
activities, social cards, and certificates.

Participants can complete one or more
projects during the challenge period —
and once they’re done, you can log their
participation to count towards the global
total. It’s fun, flexible, and a fantastic way
to celebrate coding!

Moonhack is your opportunity to be part
of something truly global and exciting! By
joining this challenge, you’re not only helping
young people build valuable skills in coding
and problem-solving, you’re also inspiring
them to see how their ideas and creativity
can make a real difference. With fantastic,
free projects and a lively community of
educators, families, and clubs worldwide,
there has never been a better time to jump
in. Let’s celebrate Moonhack’s 10th birthday
together and code the future!

MOONHACK HELPS YOUNG PEOPLE TO BUILD
VALUABLE CODING SKILLS AND INSPIRES
THEM TO SEE HOW THEIR IDEAS AND
CREATIVITY CAN MAKE A DIFFERENCE

“

Join the challenge live 14–30 October
Project submissions close 23 November

IMPORTANT DATES

n �Code Club members from Diamond Valley in Queensland, Australia, tested the Moonhack projects

helloworld.cc14

OPINIONCOLUMN

T here is a strong consensus in education that
high-quality teaching is the most important
factor in improving outcomes for all students,

especially for those with additional learning needs and
disabilities. Over the past few years, teachers and
students have benefitted from an increased focus on
research into what works when teaching programming
in schools. If you haven’t downloaded and digested The
Big Book of Computing Pedagogy yet (helloworld.cc/
bbcp), then it’s probably time to do so!

In this article, I’ll explore a selection of tried and tested
approaches to teaching programming and how they
support a range of learners, with reference to the twelve
pedagogical principles developed by England’s
National Centre for Computing Education
(teachcomputing.org/pedagogy).

Four areas of need
There are four recognised areas of need
when considering young people with
additional learning needs and disabilities:

n	� Communication and interaction:

this includes autistic learners and
children with speech, language, and
communication needs

n	 �Cognition and learning: this includes
moderate and severe learning
difficulties, and specific learning
difficulties such as dyslexia

n	 �Social, emotional, and health
difficulties: this includes children with
mental health difficulties and with
attention deficit hyperactivity disorder

How can programming pedagogies and teaching methods fully include
learners with additional needs and disabilities in computing lessons?

EFFECTIVE PROGRAMMING
PEDAGOGIES IN THE

INCLUSIVE CLASSROOM

n	� Sensory and/or physical needs: this includes visually
impaired or deaf learners, and children with a physical
disability who require additional support

It is important to recognise that what works for one
student won’t necessarily work for another — even within
the same area of need. A good knowledge of the young
people you teach is essential to delivering high-quality
teaching. The following approaches are just suggested
starting points for supporting a wide range of learners.

Lead with concepts
There is a lot of technical vocabulary relating to

programming, from ‘algorithm’ to ‘variable’.
Provide students with the opportunity to build

a shared and consistent understanding
of key concepts through the explicit
teaching of vocabulary and the regular
revision of terms. Image-supported
glossaries can help with this, and you
can find a programming-specific example
for younger pupils here: helloworld.cc/
computing-glossaries. Pre-teaching key
terms will reduce demand on working
memory, for example in learners with
dyslexia and developmental language
disorder. Deaf students will also be able to
follow lessons more easily when technical
terms have been introduced previously.

Autistic learners and young people
with learning difficulties may struggle
to comprehend abstract concepts. This
is where unplugged activities can be
useful, providing concrete contexts for

Catherine leads the new Computing &
Digital Innovation Centre in Sheffield,

UK (helloworld.cc/learn-sheffield),
supporting schools with computing

and the wider implementation of
educational technology. She has over
20 years’ experience of working with

students with special educational needs
and disabilities and their teachers, and
is passionate about making computing

accessible and inclusive for all learners.

helloworld.cc 15

these terms; and harnessing movement, sound, tangible
objects, and images will increase accessibility. Remember
the semantic wave when you go unplugged, to ensure
that learners can generalise what they have learnt about a
concept (helloworld.cc/semantic-waves).

Get hands-on
Physical computing devices, such as floor robots, micro:bits,
Crumbles, and Raspberry Pis, provide learners with a more
tactile experience of learning to program. These devices
have a range of sensory outputs, including movement,
lights, and sounds, which can help learners with a visual
impairment to fully access programming tasks. Making
connections between the code and the physical output also
supports learners with cognition and learning difficulties.
Research has found that physical computing can be highly
motivating for learners, and therefore it is a great approach
for young people with social, emotional, and health needs
who may struggle to engage in lessons. In a recent survey
of teachers, physical computing was ranked highest from
a number of approaches as being the most effective for
teaching their autistic learners (helloworld.cc/computing-
pedagogy-autistic-students), helping to make abstract
concepts more tangible and harnessing meaningful, real-
world contexts.

The Micro:bit Educational Foundation recently released
an update to allow keyboard control in the MakeCode

block-based programming environment, which is excellent
news for learners with physical disabilities who prefer to
use a keyboard rather than a mouse for access. They have
also published guides for teachers working with students
with sensory and physical difficulties (helloworld.cc/
makecode-accessibility).

Structure lessons and foster program
comprehension
Providing a range of ways for students to engage with
code helps to ensure that all learners are included in
programming lessons at a suitable level, and is a central
tenet of the Universal Design for Learning framework
(helloworld.cc/universal-design-learning).

I have written about PRIMM (Predict–Run–Investigate–
Modify–Make) before, and this is a fantastic framework for
providing different pathways through a lesson (helloworld.
cc/qr-PRIMM). The majority of learners will be able to
Predict the outcome of given code, and then Run it to
test their prediction, allowing all young people to take
part in lessons. The Investigate phase, where students
annotate and explain the workings of code and complete
debugging tasks, can be used to challenge learners and
play to the strengths of, for example, autistic students,
who may be good at detail-oriented tasks, without the
executive function demands of creating a project from first
principles. The Modify stage is great for scaffolding learning
and building confidence by allowing a level of guaranteed
success, and this can be extended by using Parson’s
Problems, where learners are asked to put code blocks or
snippets into the correct order. PRIMM activities are also
useful for creating short, focused tasks that keep the pace
of a lesson high. This allows students, for example those
with attention deficit hyperactivity disorder, to retain focus.

Computing and programming can provide opportunities
for young people with additional learning needs and
disabilities to excel. By applying the approaches outlined in
this article, you can ensure every learner feels included,
supported, and appropriately challenged. Explore the
twelve pedagogies to identify strategies that break down
barriers to learning, and amplify the unique strengths each
learner brings to your classroom (teachcomputing.org/
pedagogy or helloworld.cc/bbcp).

There are also a number of general teaching approaches that are
essential to creating an inclusive programming classroom:

n	���� Provide task sheets for students to refer to when completing
longer tasks, to support executive function and keep them
on task

n	���� Establish classroom routines and provide structure for any
group tasks to reduce anxiety

n	�� Teach problem-solving approaches explicitly to support
learner confidence

n	�� Provide a list of relevant code snippets or physical code blocks
in order to reduce cognitive load when planning out programs

n	�� Plan programming projects that solve real-world problems to
increase relevance to learners and raise engagement

n	���� Include diverse role models and highlight career paths to
inspire all young people

GENERAL APPROACHES IN
PROGRAMMING LESSONS

THESE APPROACHES
ENSURE EVERY LEARNER
FEELS SUPPORTED

“

helloworld.cc16

s a new researcher at the
Raspberry Pi Foundation, I’m

especially interested in how young people
learn to program in an era shaped by
artificial intelligence. Like many educators,
I’ve been grappling with what it means to
teach computing when powerful AI tools
are already changing how code is written,
explained, and understood.

During my master’s degree, I conducted
research that contributes to our developing
understanding of teaching about and with
AI. The central question I set out to explore
was: What happens when students use AI
to help them code, but end up learning less?
I conducted a study with university students
using tools like GitHub Copilot and ChatGPT
to complete programming tasks. The results
were both fascinating and cautionary, and
highly relevant to computing education
more broadly.

Students practised a style of coding now
often called vibe coding: quickly improvising
prompts, letting the AI tool write code, and
only checking whether it “looked right”.
The approach was fast and frictionless, but
often bypassed understanding. They could
complete assignments, yet many struggled
to explain how their code worked, or why it
worked at all.

Although this research focused on
undergraduates, the implications are

increasingly relevant for K–12 educators.
Generative AI tools are becoming more
accessible, and younger students are
beginning to encounter them in and out of
the classroom. If we don’t intervene with
thoughtful guidance and intentional design,
the habits of vibe coding could take root
early, undermining foundational learning
before it has a chance to develop.

Why friction matters
Coding is hard for a reason. Struggling to
debug, finding the right syntax, breaking
a problem into parts — these challenges
aren’t just obstacles, they’re where
learning actually happens. But AI tools
are engineered to make these struggles
disappear. The smoother the interaction, the
easier it becomes for students to skip over
the thinking.

Yet here lies the paradox: the more AI is
involved, the less actual interaction takes
place. What was once a dynamic relationship
between learner and machine becomes
one of passive prompting and automated
response. This raises concerns not only in
education, but in the very fields of human–
computer and human–AI interaction. If AI
systems reduce learning to a transaction,
rather than an exploration, we risk losing the
reflective, dialogic qualities that make these
technologies powerful partners in cognition.

A

RESEARCH

What the research reveals
In my study, university students using AI
coding tools were not blindly optimistic.
They recognised the tension between
getting quick results and actually
understanding the work. Many described
how AI encouraged skipping steps —
prompting, accepting, and moving on.
Several expressed concern about becoming
overly dependent, and losing touch with
debugging or problem decomposition.

What stood out, however, was their
desire for more than seamless assistance.
Some wanted the AI tool to pause and ask
them to explain their reasoning first. Others
suggested it could offer partial solutions or
hints rather than full answers. One student
put it simply: “I want to think first.”

These preferences point to a deeper
insight: students value challenge when it is
framed as part of meaningful learning. They

STORY BY Manni Cheung

BEYOND THE VIBE: HOW AI
MIGHT UNDERMINE LEARNING —
UNLESS WE DESIGN FOR FRICTION

#INSIGHTS

n �Three conditions
for meaningful
learning —
especially when
using AI tools

helloworld.cc 17

don’t want AI to think for them. They want it
to support their thinking.

Bringing this into the classroom
For K–12 computing teachers, the question
becomes: how do we introduce AI tools
in ways that nurture reasoning, not just
results? Here are a few practical strategies
drawn from the research:

n	 �Introduce AI with structure: frame tools
like ChatGPT as part of a larger learning
process, not just answer engines.

n	� Create rules of engagement: ask
students to predict or explain what AI-
generated code will do before running it.

n	 �Use AI to teach debugging: prompt
students to analyse flawed code, helping
them build diagnostic skills.

n	� Foster authorship conversations:
discuss what it means to co-create with
AI. Whose ideas are being expressed?

These practices help ensure that AI
remains a tool, not a shortcut that erodes
understanding. They also encourage students
to develop intentional habits of mind — skills
that will matter far beyond the classroom.

From tool to companion
This reframing of AI as a learning partner
rather than a solution engine opens space
for thoughtful design. Based on the study, I
propose three key strategies for building AI
tools that support deeper engagement:

1.	 �Prompt reflection: instead of auto-
completing code, an AI tool might ask
students to explain their logic or predict

Iivari, N. (2025). Fostering Transformative
Agency of Children in the Age of AI. Raspberry
Pi Foundation Research Seminars, Cambridge,
United Kingdom. helloworld.cc/iivari

Robbins, S. (2025). What machines shouldn’t
do. AI & SOCIETY, 40(5), 4093–4104.
helloworld.cc/robbins

Ziegenfuss, R. (2025). Generative AI Didn’t Break
Higher Ed — It Just Held Up a Mirror. Retrieved
from helloworld.cc/ziegenfuss

FURTHER READING

n �Practical
strategies for
designing AI tools
that support
learning

outcomes before confirming a solution.
2.	 �Slow the flow: small delays, nudges, or

even open-ended follow-up questions
can disrupt automatic acceptance and
reintroduce critical thinking.

3.	� Affirm agency: rather than over-
directing, AI tools can scaffold inquiry by
supporting student-led reasoning and
reinforcing ownership of the process.

These strategies reposition AI not as an
expert tutor, but as a curious peer — one
that values thoughtfulness over speed, and
inquiry over completion.

Supporting new literacies
The study also revealed that students
are navigating broader questions about
authorship, agency, and trust. Several likened
their role in AI-assisted programming to
that of a designer or curator — shaping
prompts rather than writing code line by
line. They expressed nuanced views about
when AI use felt appropriate and when it
compromised their learning.

This points to a broader pedagogical
challenge. As generative AI becomes more
prevalent, students need support not just
in coding, but in cultivating critical digital
literacies: when to rely on AI tools, how
to question its suggestions, and how to
maintain their own intellectual voice.

These are not technical skills alone. They
are ethical and epistemic practices. And
our educational tools should help learners
navigate these choices with intention, not
by accident.

This vision is echoed in one of our recent
computing education research seminars, led
by Professor Netta Iivari, titled ‘Fostering
transformative agency of children in the
age of AI’ (helloworld.cc/iivari). Drawing
on examples from participatory and critical

computing education, Iivari urged educators
to create opportunities for children to not
only use AI, but to question, critique, and
reimagine it. Her work invites us to position
children as active agents in shaping their
digital futures, not passive recipients of
algorithmic decisions. When AI is framed
this way, it can empower young learners —
not just accelerate their tasks.

Moving forward: keeping human
thinking central in AI teaching
AI tools aren’t going away, and students will
use them — with or without our guidance.
As computing educators, our task is not
to resist this change but to shape it. We
can introduce AI in ways that support
autonomy, deepen reasoning, and preserve
the slow, effortful parts of learning that
make understanding possible.

As educator Randy Ziegenfuss
observes (helloworld.cc/ziegenfuss), AI
hasn’t broken education — it has simply
revealed what was already brittle. Many
assessment models still reward output over
understanding, and learning experiences
too often prioritise speed and correctness
over curiosity and process. The opportunity
now is not to stop students from using AI,
but to redesign learning so that it becomes
so purposeful, so deeply human, that it
resists automation altogether.

Vibe coding shows us what happens when
fluency outpaces thought. But the deeper
risk is systemic: the technologies designed
to enhance human–computer interaction
may strip away that interaction. In education,
especially in early and formative years, we
cannot afford to collapse the space between
prompt and response. If we want students
to learn, we must protect the struggle. And if
we want AI to support that learning, we must
teach it to ask, not just answer.

helloworld.cc18

rogramming was pretty
straightforward when I was

teaching Key Stage 1 [ages 5–7]. Now I’m
moving to Year 5 [ages 9–10], it’s … well, I
just hope someone else will teach it.”

The language teaching connection
Computing and modern foreign languages
are two of the three subjects that primary
teachers are least confident with (helloworld.

cc/lives-of-teachers), perhaps with good
reason — both require guiding children
through a potentially unfamiliar language.
But here’s the thing: primary teachers feel
most confident teaching English, with well-
tested, structured approaches for analysing,
understanding, and creating text. What if we
could apply some of those familiar strategies
to programming, making code comprehension
as routine as reading comprehension?

FLARE: revealing the structures
of code
We’ve all seen it in our computing lessons:
some children excitedly pile blocks onto the
screen, keen to make something happen, but
aren’t sure why it works. Others hold back,
overwhelmed by the unfamiliar look of code.
While it’s tempting to focus only on making
things ‘work’, we must build understanding
so that children develop the fluency to
express their creative ideas.

FLARE (Framework for Learning About
Relational Elements) is a method for
leveraging common factors in literacy
and programming. It adapts structured
questioning from English lessons to block-
and text-based programming. So I hope it is
something you’ll recognise, rather than see
as something you need to learn.

“P

RESEARCH

The four elements of FLARE
Just as meaning in English is built from words,
sentences, paragraphs, and purpose and
organisation, the meaning of code is built at
different ‘scales’. FLARE breaks code into four
elements; we can use them like lenses to think
about different aspects of code (Figure 1).

How to use FLARE in the classroom
FLARE works with Scratch, MakeCode,
2Code, Python, and even C++ and Assembly
Language. While FLARE has a ‘blocks’
element, it works equally well with text-based
languages. Just read ‘block’ as ‘statement’ or
‘command’. The same four elements reveal
code structure regardless of syntax.

You don’t need to throw out your
curriculum. Try the FLARE lenses with one
lesson or code snippet from your scheme
of work. Leave out any parts that aren’t
relevant to your lessons.

Start simple this week
n	 �Pick one lesson and add two FLARE

elements: Block, and perhaps Relations.
A Block prompt would be asking
students to find individual blocks and
explain what each does. A Relations
prompt would be, ‘When does this
block run?’

STORY BY Justin Heath

FLARE: FRAMEWORK
FOR LEARNING ABOUT
RELATIONAL ELEMENTS

CODE COMPREHENSION THROUGH FAMILIAR STRATEGIES

#INSIGHTS

Choose one lesson and add a FLARE-style
question

Start with Blocks and Segments if you’re
new to code

Make a question bank for different block types

Team up with a confident programmer or
computing lead if possible

Allow yourself and your pupils a couple of
weeks to get comfortable

You’ll soon see deeper engagement and increased
confidence in your lessons.

GETTING STARTED:
A CHECKLIST

helloworld.cc 19

n	 �Use real code from your scheme so the
questions stick to what you’re teaching.

Build your questioning routine over
the next two weeks
n	� Make a quick question bank per common

block type (events, motion, conditionals)
n	� Add one Segment prompt, ‘What’s this

chunk trying to achieve?’, and one Macro
prompt, ‘What was the programmer
aiming for in this bit?’

Work with colleagues during this
term
n	� Pair with a confident programmer/

computing lead to co-plan a FLARE opener
n	� Swap a one-page slide that shows the

four lenses and six to eight question
stems you both like

Give it time (culture, not a trick)
n	� Expect one to two weeks for you and

pupils to feel natural with the language
n	� Keep questions visible on the board

or in a handout, so that pupils ask the
questions unprompted

What teachers found
During a small-scale trial of FLARE in three
classrooms, featuring teachers with a range
of programming experience, clear benefits
were seen:

n	� Teacher confidence increased. Even
those with limited coding backgrounds
said the clear structure “made it easier for

me to understand personally, and then
teach it more effectively”.

n	� Children became ‘code detectives’.
They began predicting, explaining,
and questioning code, rather than just
following instructions.

n	� Questions improved. Teachers moved
from generic ‘What does this do?’ to more
targeted, differentiated questioning for
both struggling and advanced learners.

n	� Talk increased. Lessons became more
interactive, with children eager to share
their ideas about how code worked.

Challenges were also found:

n	� Time. Getting used to how FLARE works 	
needed some time.

n	� Relations and Macro. These elements
can feel abstract and confusing.

Why this approach works
FLARE builds on established educational
theory: Piaget’s progression from concrete to
abstract (helloworld.cc/piaget), Vygotsky’s
social learning (helloworld.cc/vygotsky), and
Bruner’s spiral curriculum (helloworld.cc/
bruner). Perhaps most importantly, FLARE
recognises that meaning in code doesn’t just

live inside individual blocks or commands.
Understanding comes from how parts
relate — what triggers what, what follows
what, and how chunks cooperate. FLARE
helps you surface those relationships in
everyday classroom talk.

I developed FLARE within the TICE2
project (helloworld.cc/tice2), and continue
to refine it through classroom use and
teacher feedback. You can find more
information, including resources such as
explainers and templates from the trials,
at jjgh.me.

Heath, J., Whyte, R., Sentance, S. (2025). FLARE:
A framework supporting code comprehension
and formative assessment in block-based
programming education. Computing Education
Practice (CEP ’25) ACM. (helloworld.cc/flare)

Sentance, S., & Waite, J. (2021). Teachers’
perspectives on talk in the programming classroom:
language as a mediator. In A. Ko (ed.), Proceedings
of the 17th ACM Conference on International
Computing Education Research, 266–280.
(helloworld.cc/talk-in-programming)

FURTHER READING:

FLARE ADAPTS STRUCTURED
QUESTIONING FROM ENGLISH LESSONS TO
BLOCK- AND TEXT-BASED PROGRAMMING

“

n �Figure 1 The FLARE elements make code structure visible and discussable,
even for teachers who don’t think of themselves as programmers

Element

Block

Segment

Macro

Relations

What to look for

Individual draggable code blocks with specific functions
Literacy link: words clauses and sentences

Connected blocks with a clear boundary, either a sequence
running in order or blocks inside a control structure
Literacy link: paragraphs

Overall project design, organisation, and purpose
Literacy link: purpose and organisation

Communication between different segments — the
connections that aren’t always visible
Literacy link: connectives and cohesive devices

Classroom examplesPurpose

n Motion blocks (move, turn)
n Looks blocks (say, change costume)
n Control blocks (wait, repeat)

n A sequence to move a sprite in a square
n All blocks inside a repeat 10 loop
n The contents of an if touching edge block

n ‘This is a quiz game with three levels’
n Flowchart of game logic
n Storyboard for an animation

n Event triggers (when flag clicked block)
n Broadcasts between sprites
n Variables affecting multiple segments
n Function calls

Performs a single, basic
action or instruction

Defines a specific task involving
multiple steps, repeats, or conditions

Defines the program’s main goal and
how parts work together

Coordinates how segments work
together as a team

helloworld.cc20

he Research, Insights section
of Hello World often includes

summaries of research that relate to
specific aspects of classroom practice.
In the research I am describing here,
the questions being asked are more
fundamental. What do we mean when we
talk about computing education in school?
What is it? Why do we teach it? Who
should be learning it? Now that computing
education is embedded in many countries
around the world (helloworld.cc/
computing-education-worldwide), it
feels like the subject is here to stay, so
it’s important to be able to have a shared
language to enable us to discuss answers
to these questions.

We do not all agree!
It seems these questions do not have
universal answers. People may disagree
in their answers to the ‘why’ and ‘what’
questions while still agreeing that
computing is an important aspect of the
school curriculum. In fact, this research was
triggered by the fact that the instigators
of the research project (me, Carsten
Schulte, and Sören Sparmann) had noticed
that computing education researchers
were developing research initiatives in
school and writing papers that seemed
to suggest quite differing underpinning
rationales or value systems. Thus, our key
motivation was to understand and explain
these differences so that people might be

able to understand their own, as well as
others’, perspectives. Although we focused
on researchers’ views, findings are also
relevant for classroom practitioners, those
developing resources, and curriculum
resources themselves.

Computing as a discipline vs.
computing education
Back in 2008, Tedre and Sutinen proposed
three perspectives on the discipline of
computing, identifying that computing
may be viewed as a mathematical subject,

T

#INSIGHTS
RESEARCH

a scientific discipline, or may stem from
engineering (helloworld.cc/the-science-
of-computing). What this work did not
introduce was computing as a societal
discipline, which came out strongly in our
recent research.

Thinking about computing education
takes this debate one step further. If we
understand why we teach a subject,
it impacts the curriculum we develop.
Consider the spider web diagram (Figure
1) proposed by the much-cited curriculum
theorist Van Den Akker (helloworld.cc/

STORY BY Sue Sentance

SO WHY DO WE TEACH
COMPUTING IN SCHOOL?

n �Figure 1 van den Akker’s curriculum
spider web, which addresses curriculum-
related questions

helloworld.cc 21

vandenakker). What this shows is that if
we understand why students are learning,
it impacts the content, learning activities,
students involved, assessment approaches,
etc. So understanding the rationale for
teaching computing has a huge impact on
how a curriculum (both national and local) is
developed and implemented.

The results
A group of 15 researchers carried out this
work. The approach used employed a mix
of theoretical work and literature analysis.
Considering the literature, two approaches
were used. Firstly, a traditional review
focusing on a set of around 60 papers which
examined how the explicitly stated rationales
of the authors impacted their work. Secondly,
a larger scale review of over 1000 papers
using Natural Language Processing and Large
Language Model techniques to understand
implicit rationales for research work. For the
theoretical work, we considered philosophy
and theory, beliefs about education, and
perspectives on computing as a discipline
(rather than computing education). Through
much discussion and synthesis, we identified
four main traditions of computing education
(Figure 2).

These traditions highlight different
aspects of computing and might influence
curriculum design as well as research foci.
The algorithmic/problem-solving tradition

highlights the unique ways of thinking and
the problem-solving inherent to computing,
whereas the scientific tradition emphasises
learning about the natural and artificial
world through computational approaches. If
your values point to the scientific tradition,
you might teach computing showing how
computing can be used across different
domains. Both the design and making and
the societal traditions focus on the real
world: the former stresses the significance
of implementing computational solutions
within real-world artefacts, whereas if you
teach computing based on the societal
tradition, you might encourage students
to reflect on the social context and moral
implications of computing.

What is your perspective?
I believe we all have a perspective on what
computing education is and what it is for,
but that this might change over time. It
will also change depending on our context
(primary or secondary teaching level,
vocational, etc.). We also may find that we
can relate to ALL these traditions, but that
one or two are much stronger for us. To
examine this for yourself, try ranking the
following four statements:

A) 	�Building personally meaningful
projects is the best way to learn
computational concepts.

B) 	�Students must learn how computing
systems are shaped by societal values
and power dynamics.

C) 	�Understanding algorithms and
computational processes is more
important than understanding the data
those algorithms manipulate.

D) 	�Computing should be seen as a means
to understand and explore the world,
both natural and artificial.

Compare your ranking to others you
work with to see if you share the same
perspectives!

Thanks to all the researchers
Our working group included the following
researchers: Carsten Schulte, Sue Sentance,
Sören Sparmann, Rukiye Altin, Mor
Friebroon-Yesharim, Martina Landman,
Michael T. Rücker, Spruha Satavlekar,
Angela Siegel, Matti Tedre, Laura Tubino,
Henriikka Vartiainen, J. Ángel Velázquez-
Iturbide, Jane Waite, and Zihan Wu,
representing 13 different universities across
10 different countries. We worked on this
from February to December 2024. Many
thanks to them all!

The full paper is openly available online
(helloworld.cc/computing-education)
or there is a blog post with a little more
detail on our website (helloworld.cc/
why-teach-computing). We are now
working on how this work translates to
AI education. To keep up to date with
the work of the Raspberry Pi Computing
Education Research Centre, visit
computingeducationresearch.org.

n �Figure 2 Four traditions of computing education

Tradition

Algorithmic/problem-solving

Societal

Scientific

Design and making

View of computing as a discipline	

A formal practice that focuses on algorithms,
computation, and transforming information

A social practice shaped by its community, producing
tools that embody and influence societal values

A method of scientific inquiry aimed at understanding
the world

An engineering science emphasising the design and
construction of artefacts within constraints

How it shapes computing education	

Encourages teaching abstract concepts and context-
independent thinking

Inspires learners to examine the interplay of computing
and society while fostering a sense of responsibility

Promotes modelling, simulation, and computational tools
for inquiry

Anchors projects in learners’ creativity, interests, and
collaboration to solve complex problems

IF WE UNDERSTAND WHY WE TEACH
COMPUTING, IT IMPACTS THE CURRICULUM
WE DEVELOP AND IMPLEMENT

“

helloworld.cc22

he programmer, like the poet,
works only slightly removed from

pure thought-stuff. He builds his castles
in the air, from air, creating by exertion of
the imagination. Few media of creation are
so flexible, so easy to polish and rework,
so readily capable of realizing grand
conceptual structures.” (Fred Brooks, The
Mythical Man-Month, 1975)

Programming as an act of creation
What pictures or emotions does
‘programming’ conjure up for you?

For many, programming brings up
negative images of socially challenged
geeks staring at glowing screens in
windowless basements. Or, somewhat
more positively, an economically useful skill,
but perhaps not a rewarding one.

But I think Fred Brooks has it right in the
quotation at the start of this article. When
you look at a jumbo jet, you get a visceral
sense of its size, its power, its complexity,
and the remarkable human creativity and
achievement that makes it fly at all. But
when you look at a computer running Linux,
you just don’t see the astonishing stack of
clever, elegant, powerful layers of software

“T that somehow conspire to put up that
simple-looking window on the screen. It is
the result of thousands of person-years of
creativity and solid hard work — yet it is
intangible, almost invisible.

Designing and writing software is one
of the most demanding, intellectually
stretching tasks that humans undertake. If
we build a building, we are limited by the
strength of steel — we can only make the
tower so high before it will fall under its
own weight. But software knows no such
limits. The only limit is our own ability (or
inability) to manage the complexity of the
systems we build. That is humbling — but
also exciting.

So programming is, first and foremost, a
creative activity. When you write a program,
you bring into being something that has
never existed before. It can be a thing of
beauty or a complete mess — but it is yours.

What is programming anyway?
When we think of programming, we often
think of writing a program to do something,
starting from scratch. That’s pretty hard!
But when I think of programming, I think of
a broad spectrum of other things, including:

n	� Understanding an existing program and
predicting how it will behave

n	� Explaining to someone else how it
works

n	� Modifying an existing program to do
something new

n	� Starting from a program that is
misbehaving: forming a hypothesis
about what is wrong; designing
experiments to test that hypothesis;
performing those experiments;
designing a fix to cure what is wrong
— this is the scientific method in
action

n	� Understanding a problem you want to
solve and figuring out precisely what
you want the program to do to solve it

n	� Using existing libraries and frameworks
to build something wonderful — your
program might be quite short, but it can
leverage person-years of others' work

n	� Writing tests that explore whether
the program meets its design goals,
including writing the tests before you
have written the program — this is often
called ‘test-driven development’

n	� Collaborating with others on a shared
project, using platforms like GitHub

PROGRAMMING THE FUTUREPROGRAMMING THE FUTURE
Simon Peyton Jones discusses programming as an act of creativity

©
 Yu

ton
g L

iu
&

Kin
gst

on
 Sc

ho
ol

of
Ar

t /
 be

tte
rim

ag
eso

fai
.or

g /

cre
ati

vec
om

mo
ns

.or
g/l

ice
ns

es/
by

/4
.0/

helloworld.cc 23

All of this requires careful, logical thinking,
which is a very useful life skill in its own
right. Computers are non-judgemental,
but pitiless, judges of the precision of our
thought.

But software development is not just
nerdy logic-chopping. It is a rich, social
activity, involving lots of interaction with
other people, as we iteratively refine our
shared vision of what the program should
do and how we can design modular pieces
to achieve that goal. It is very far from a
sterile, mechanical process of ‘coding’.

Will programming be rendered
obsolete by AI?
Consider the question: how can I get this
computer to do task X for me?

For most of computing history, the
answer has been: ‘Write a step-by-step
program so that, when the computer blindly
follows those steps, it does task X.’

The eye-opening thing about machine
learning (the engine underlying AI) is that
it suggests an entirely different way of
telling a computer what you want it to do.
Instead of a step-by-step program, show it
a lot of examples of what you want it to do,
and allow it to ‘learn’ what to do. That’s an
utterly different approach, and one that is
data-centric rather than algorithm-centric.
It is not magic — the mysterious ‘learning’
is actually just a lot of multiplications and
additions — but it is very, very different.
You might enjoy my talk ‘Bits with soul’
(2025), which explains how machine
learning actually works (helloworld.cc/
darwin-codes).

For some tasks, machine learning is
definitely better: recognising cats, or
playing Go, for example (helloworld.cc/
deepmind-go). For other tasks, ‘traditional’
algorithmic programming is better: flying
an aeroplane, for example. We should use
critical judgement to choose the best tool
for the job.

As programming copilots have shown, a
generative AI system can even write many
‘traditional’ programs. Will programming
(and programmers) therefore be rendered

obsolete by AI? No, definitely not. Using
AI tools to help write programs is like
giving a carpenter a power drill: they can
do more in the same amount of time; they
can concentrate on rewarding activities,
rather than repetitively drilling holes; they
can be more productive; and they can
have more fun.

The nature of programming may change,
perhaps quite a bit. If you want to use a
graphics library to draw a complex bar
chart, that library will have dozens and
dozens of functions, each with lots of
parameters. AI copilots are really good at
this stuff, so you don’t have to remember
the specifics of all those functions and their
parameters. That can free you to spend
time thinking about what sort of chart you
wanted to draw in the first place, where the
data comes from, and so on.

But copilots need pilots. A generative AI
engine is just a machine that emits output
that is, in a probabilistic sense, a likely
response to a given prompt. That is far
from a guarantee that it is the right output,
and how could it be? Real programs have
very complicated specifications, which are
usually incomplete, seldom formalised, and
constantly changing. An informally stated
prompt, even a long one, is far from a full
specification; or, to put it another way,
many differently behaved programs might
be reasonable outputs for the same prompt.

For all but the most throwaway code, a
human (the pilot) must review, understand,
modify, and sign off on the code that is

SIMON PEYTON JONES
Simon is a British computer scientist known for
his work on functional programming languages,
including being a key designer of the Haskell
language and the Glasgow Haskell Compiler (GHC).
He has held academic positions at University
College London and Glasgow University, worked at
Microsoft Research, and is currently an Engineering
Fellow at Epic Games (epicgames.com). He is
also a founder and chair of Computing at School
(computingatschool.org.uk).

produced. All serious software undergoes
this kind of code review, even when it is
written by human beings in the first place.
And of course, those code reviewers must
themselves be expert programmers.

In short, AI is not going to replace
programmers: it can just make us more
productive. Caution is in order though:
AI tools make developers slower, but
they think they are faster (helloworld.cc/
slow-down).

You might enjoy my blog post from
2023 on this topic (helloworld.cc/teach-
code), or the Raspberry Pi Foundation's
2025 white paper (helloworld.cc/kids-
code-2025).

Programming the future
Douglas Rushkoff’s book from 2010,
Program or Be Programmed (helloworld.
cc/rushkoff), asks the question: do we
direct technology, or do we let ourselves
be directed by it and by those who have
mastered it?

The present is permeated by software,
and the future even more so. We can
choose to have agency over this
ubiquitous software, or to be governed
by it. ‘Programming’ may not mean exactly
the same thing in the future as it has in
the past, but it is the key to possessing
that agency. I am proud to be a
programmer. As William Ernest Henley
puts it in his poem Invictus, “I am the
master of my fate: I am the captain of
my soul.”

helloworld.cc24

y name is Esther Mmbai Diera,
and while my foundation lies

in the realms of mathematics and
chemistry, my educational journey has
taken an exhilarating turn, igniting a
passion I never fully anticipated.

For years, I thrived as a classroom
teacher, shaping young minds within
the vibrant learning environment of
Kakamega County in western Kenya.
However, my path has converged with the
dynamic world of educational technology
at the African Maths Initiative (AMI;
africanmathsinitiative.net). Here, I’ve not
only honed my skills as a mathematics
instructor but also discovered a thrilling
new frontier: empowering educators
through creative coding with Scratch.

M From blocks to breakthroughs
My introduction to this captivating
software, orchestrated by AMI's visionary
lead educator Mr Sam Okoth, came
when I took a self-paced Raspberry Pi
Foundation course.

It felt as if I was unlocking a hidden
door to boundless imagination. I was
instantly captivated by Scratch’s playful,
interactive nature. What unfolded over a
mere two days was not just mastery of a
software, but an awakening of my own
creative potential, fuelled by the engaging
learning paths that transformed education
into an adventure.

Just a week later, the opportunity to co-
facilitate my first creative coding workshop
in Kisumu County arrived — a moment that

was brimming with both excitement and
a healthy dose of trepidation. The thought
of sharing this newfound passion with my
esteemed colleagues stirred a nervous
energy within me. Yet, the bedrock of my
classroom management skills and my
comfort in public speaking proved to be
invaluable anchors.

Supported by my incredible team, those
initial moments of uncertainty soon melted
away and were replaced by a confident
stride. As I guided my peers through the
wonders of Scratch, the experience was
transformative, not just for the teachers
I was instructing, but for myself as well.
The teachers’ unbridled creativity and
infectious enthusiasm became a powerful
source of learning and inspiration.

UNLEASHING CREATIVITYUNLEASHING CREATIVITY
A new instructor’s joy in learning to program in Scratch

n ��Guiding teachers in Kisumu County in western
Kenya through their creative coding journey

helloworld.cc 25

Frameworks for facilitating
Two months later, I facilitated sessions at
the Kongoni Creative Coding Workshop
(kongoninetwork.org) back in Kakamega
County in western Kenya. With its theme
of ‘Empowering Educators with Scratch
for Creative Learning’, the workshop
further solidified my commitment to
this transformative tool. We immersed
ourselves in hands-on exploration within
the accessible Scratch environment, guided
by Code Club’s ‘3…2…1…Make!’ framework
(helloworld.cc/3-2-1-guide) together with
the cyclical magic of Scratch founder Mitchel
Resnick’s ‘Creative Learning Spiral’ approach
(helloworld.cc/creative-learning-spiral).

Witnessing educators beginning to
embrace these concepts and develop
their foundational coding skills was truly
exhilarating. Facilitating three sessions
and co-leading others alongside my
dedicated colleagues felt remarkably natural.
The ease with which I could now guide
teachers through the platform, troubleshoot
challenges, and witness their ‘aha!’ moments
filled me with an immense satisfaction.

The follow-up training was perhaps the
most rewarding experience yet. To witness
the tangible progress the teachers had made
in the intervening weeks, and the innovative
ways in which they were already integrating
Scratch into their classrooms, was nothing
short of inspiring. Leading the initial session,
in which they shared their unique journeys
and tackled implementation challenges,
highlighted their growing confidence and
ingenuity. Their project presentations were
a powerful testament to their mastery, a
symphony of digital creativity that resonated
deeply within me as their facilitator.

Igniting future creators
Creative coding using Scratch has
profoundly impacted me, both as a
continuous learner and as an educator. It
has unlocked a vibrant space within me
where imagination and creativity can
flourish, and coding has evolved from a skill
into a cherished hobby. Now, my driving
force is to ignite this same spark in as many
educators as possible. I envision a future
where learning is infused with the joy and
engagement that Scratch offers. The
prospect of introducing Scratch in Code
Clubs fills me with excitement, knowing it
will provide learners with a platform to
code, create, and enjoy the process of
discovery. My journey as a Scratch
instructor is not just about teaching code;
it’s about empowering educators to unleash
the creative potential within themselves and
their students, paving the way for a more
innovative future for all.

n �Exploring the Scratch interface and preparing to guide teachers on this
exciting coding adventure

n ��Guiding teachers in Kongoni as they navigate the Scratch environment
and discover the power of coding to engage their students

WITNESSING THE PROGRESS TEACHERS HAD
MADE WAS NOTHING SHORT OF INSPIRING“

ESTHER MMBAI DIERA
Esther is a passionate chemistry and
mathematics educator who is dedicated
to sparking curiosity, confidence, and
creativity in every learner (LinkedIn:
Esther Diera).

helloworld.cc26

s educators, we celebrate when
students master their first

programming language, often block-
based (like Scratch) or procedural Python,
and begin to express their ideas through
logic, structure, and creativity. But what
happens when those same students
encounter their second language, typically
a text-based one like Python or object-
oriented Java?

A My PhD research into programming
language transfer offers useful insights. In
that work, we investigated how students
transition between text-based languages,
particularly from procedural Python
to object-oriented Java (helloworld.cc/
conceptual-transfer-programming).

We found that students often carry over
assumptions from their first language; some
helpful, some not helpful. Whether these
assumptions support or hinder learning
depends on how cleanly the concepts
transfer. The research further proposes
a pedagogy of transfer to help teachers
anticipate and support these transitions
(helloworld.cc/conceptual-transfer).

Understanding programming
language transfer
Drawing on natural language acquisition
theories, we identified three types of
conceptual transfer students experience

when learning a second programming
language during code comprehension:

1. True Carryover Concepts (TCCs)
These are constructs that share similar
syntax and semantics across languages,
enabling successful transfer.

Example:
Python:
if x > 5:
	 print("x is greater than 5")

Java:
if (x > 5) {
	� System.out.println("x is greater

than 5");
}

Because the structure and meaning are
nearly identical, students usually understand
and apply them correctly and implicitly.
Teachers can move quickly through these.

WHAT PROGRAMMING LANGUAGE WHAT PROGRAMMING LANGUAGE
TRANSFER TEACHES US ABOUT TRANSFER TEACHES US ABOUT

HELPING STUDENTS TRANSITIONHELPING STUDENTS TRANSITION
Ethel Tshukudu draws on her research into programming language

transfer, helping educators guide students from blocks to text

ETHEL TSHUKUDU
Ethel teaches introductory Java
programming at San José State University,
USA. Her PhD research focused on
programming language transfer, and she
supports global computing education
through CSEdBotswana and ACM SIGCSE
Board service (@EthelTshukudu,
LinkedIn: Dr Ethel Tshukudu).

n ����Figure 1 Transfer Pedagogy Framework, which helps educators to recognise
the type of transfer involved and to respond with targeted strategies

helloworld.cc 27

2. False Carryover Concepts (FCCs)
These constructs have similar-looking
syntax across languages but behave
differently, often leading to misconceptions.

Example:
Python:
e = [1, 2, 3]
f = [1, 2, 3]
print(e == f) # True (compares
contents of the list)

Java:
int[] e = {1, 2, 3};
int[] f = {1, 2, 3};
System.out.println(e == f); //
False (compares references of
arrays)

Here, students incorrectly assume that
equality behaves the same way in Python
and Java. This is where misconceptions
arise. It is also where we can compare
and correct understanding (helloworld.
cc/conceptual-transfer), and use the
opportunity to introduce deeper concepts,
such as memory references, that were
abstracted away in the first language.

3. Abstract True Carryover Concepts
(ATCCs)
These concepts share similar meaning but
differ in form and representation between
the languages.

Example:
Procedural Python:
dog = {"name": "Fido", "age": 5}

Java:
class Dog {

String name;
int age;
Dog(String name, int age) {

this.name = name;
this.age = age;

	 }
}
Dog dog = new Dog("Fido", 5);

While Python dictionaries and Java
objects differ in syntax and structure,
both represent structured data associated
with named attributes, making them
conceptually similar from a learner’s
perspective. Teachers can support transfer
by bridging understanding through analogy,
similar examples, and guided comparisons,
as shown in the example.

The transfer pedagogy framework
To support effective teaching across
languages, we proposed the Transfer
Pedagogy Framework (helloworld.cc/
conceptual-transfer), shown in Figure 1.
The model begins with a student prediction
of how a concept from Language 1 applies
to Language 2. The teacher then provides
feedback based on that prediction:

STRATEGIES FOR SUPPORTING TRANSFER LED BY THE TEACHER

Strategy

Match familiar code

Contrast behaviour

Bridge abstract concepts

Description

Use familiar constructs shared across languages, such as 'if' statements, and show their equivalent
forms in Python, as students typically grasp these quickly and require minimal reteaching.

Use similar-looking code that behaves differently across languages to prompt discussion, correct
misconceptions, and introduce deeper concepts.

Use analogies or visuals to connect concepts, for example, sprites to objects and blocks to functions
when moving from Scratch to Python. Reinforce the connection by using consistent variable names
and access patterns across languages to highlight conceptual similarities. Where possible, allow
learners to toggle between block and text modalities to support side-by-side comparison.

Transfer Type

TCC

FCC

ATCC

n	� If the prediction is correct, it is usually
a TCC, and learning proceeds with
minimal intervention

n	� If the prediction is incorrect, the teacher
guides the student to compare and
correct (FCC) or compare and connect
(ATCC)

The process concludes with student
reflection, allowing learners to consolidate
and refine their understanding.

Applying the transfer research to
block-to-text transitions
Earlier work by Weintrop and Wilensky
shows that block-based environments
reduce syntactic load, enabling early
focus on logic and structure, which are
key foundations for conceptual transfer
(helloworld.cc/comparing-programming).
This may explain why their research
reported that students taught with blocks
outperformed their text-based peers,
even on text assessments, demonstrating
near transfer of core concepts. While
my research focused on text-to-text
transitions, I believe my research is
valuable when helping students transition
from block-based tools like Scratch to
text-based programming in Python. In
the case of Scratch to text, we may be
encountering a lot of ATCC concepts,
where there are lots of differences but
concepts are the same.

helloworld.cc28

bridge this gap. They preserve the visual,
interactive feel of Scratch while gradually
introducing Python syntax. This aligns with
the ‘compare and connect’ strategy for
ATCCs in the framework. However, teacher
intervention is crucial during transfer.

Connecting to broader work
Other research shows that dual-mode
environments, where learners can toggle
between blocks and text, support a range
of student strategies, such as comparing
and copying, and hence encourage explicit
comparisons across representations
(helloworld.cc/switch-mode).

Similarly, Guzdial demonstrates the power
of scaffolding in a cross-representational
sequence: students begin with a simplified
‘teaspoon’ language, then move to Snap!,
and finally move to equivalent Python
code using Runestone Academy e-books
(helloworld.cc/scaffolded-programming-
arts). His design, inspired by conversations
around programming language transfer,
emphasises the importance of surface
alignment and semantic continuity to
promote conceptual transfer.

For example, in Scratch:

This is conceptually simple: an event, a loop,
and an action. But its Python equivalent in
trinket (trinket.io/python):

The Python version introduces imports, object
creation, and method calls, none of which are
explicit in Scratch, where the sprite is treated
as an object and actions are hidden method
calls. As a result, students may fail to predict
how these concepts transfer. In these cases,
the teacher must step in to compare and
connect representations, an ATCC scenario in
the framework.

Why this matters for teaching
This transition isn’t just about teaching
syntax, it’s about helping students manage
the cognitive load that Scratch once handled
for them: from setup and graphics to object-
oriented structure and control flow. For
many, the sudden complexity of text-based
languages can be overwhelming.

Tools like Trinket, which support Python
turtle graphics in the browser, can help

Guzdial, M. (2023, July 10). A Scaffolded Approach
into Programming for Arts and Humanities
Majors. Computing Ed Research — Guzdial's Take.
(helloworld.cc/scaffolded-programming-arts)
Lin, Y., Weintrop, D., & Mckenna, J. (2023, June). Switch
Mode: Building a middle ground between Block-based
and Text-based programming. In Proceedings of the
2023 Symposium on Learning, Design and Technology
(pp. 114-118). (helloworld.cc/switch-mode)
Tshukudu, E., & Cutts, Q. (2020, August).
Understanding conceptual transfer for students
learning new programming languages. In
Proceedings of the 2020 ACM conference on
international computing education research (pp.

227-237). (helloworld.cc/conceptual-transfer-
programming)
Tshukudu, E., Cutts, Q., & Foster, M. E. (2021,
November). Evaluating a pedagogy for improving
conceptual transfer and understanding in a
second programming language learning context. In
Proceedings of the 21st Koli Calling International
Conference on Computing Education Research (pp.
1-10). (helloworld.cc/conceptual-transfer)
Weintrop, D., & Wilensky, U. (2017). Comparing block-
based and text-based programming in high school
computer science classrooms. ACM Transactions
on Computing Education (TOCE), 18(1), 1-25.
(helloworld.cc/comparing-programming)

FURTHER READING

Final thoughts
How we teach the first programming
language shapes how students learn the
second. In block-based tools like Scratch,
students focus on logic and structure. In
text-based languages like Python, they must
navigate syntax, abstraction, and complexity.
Using the Transfer Pedagogy Framework,
educators can anticipate where students will
thrive, where they’ll struggle, and how to
guide them across paradigms intentionally.

In essence, teaching a second
programming language is not just
a technical shift, it’s a pedagogical
opportunity to do the following:

n	� Surface prior assumptions
n	� Leverage transferable knowledge
n	� Build deeper, more flexible mental

models of programming

Whether students are moving from Scratch
to Python, or from Python to Java,
understanding programming language
transfer helps us teach more intentionally,
transforming what might seem like a hurdle
into a powerful learning moment.

TEACHING A SECOND LANGUAGE
IS A PEDAGOGICAL OPPORTUNITY“

helloworld.cc 29

ovice programmers often start
their learning journey with

block-based editors, and later focus
on traditional text-based editors. The
transition between these two different
editing paradigms is known to be difficult,
as students may not easily transfer the
knowledge they acquired while using
blocks to the textual counterpart in a
text-based editor, and in a programming
language that differs in syntax.

To facilitate this transition, Strype, an
online editor for Python, proposes an
intermediate approach using frame-based
editing. This approach combines the
safeguards and simplicity of blocks, with
the flexibility and realism of text. With
educational purposes in mind, Strype
can be used to create different kinds
of applications.

What is Strype?
When encountering a new programming
environment, a teacher typically asks: What
is it? What is new or different? And why
should I care?

Let’s start with what it is. Strype
(strype.org) is a free, web-based Python
programming environment designed for
novice programmers. Strype operates
entirely in a web browser, eliminating
the need for installation and allowing
users to start programming instantly. Its
unique graphics capabilities allow for
more engaging introductory examples
than traditional "Hello World" programs,
fostering motivation and engagement
while still teaching fundamental concepts

N like variables, ′if′ statements, and loops.
Finally, its innovative frame-based editing
blends elements from block-based and
text-based editors to offer the best of
both worlds: simplified statement-level
code entry and error reduction, combined
with the organisation and the power of a
professional language.

What is different about Strype’s
programming environment?
Unlike traditional text editors where users
type character by character, Strype’s frame-
based editor allows an entire statement,
such as an ′if′ statement or ′for′ loop, to
be entered in a single interaction. Upon
opening Strype, a minimal Python program

appears with a blue bar, the ‘frame cursor’,
indicating where new frames can be
inserted. This cursor can be moved up and
down using arrow keys.

Frames: every statement in Strype is
represented as a ‘frame’ inserted into the
program using a single command key. A
complete list of available frames and their
command keys is displayed in the top right-
hand side of the Strype interface, adapting
contextually to the cursor’s position. For
example, pressing ‘i’ inserts an ′if′ statement
frame. Once inserted, frames contain ‘slots’
to fill in more code.

Slots: frames have two types of slots:
‘frame slots’ which accept other frames, and
‘text slots’ which accept text. In an if-frame,

STRYPE: A FRAME-BASED STRYPE: A FRAME-BASED
APPROACH TO PYTHONAPPROACH TO PYTHON

Simplifying Python for beginners with intuitive frame-based
editing and interactive graphics

n ���The Strype system runs in a web browser, with graphics capabilities and frame-based editing

helloworld.cc30

the condition is a text slot, and the body
is a frame slot. When editing, the system
indicates the slot type with either a text
cursor (for text slots) or a frame cursor (for
frame slots). Slots with a white background
are mandatory and must be filled, while
cream-coloured slots can be left empty.

Moving frames: frames can be moved
using the mouse (drag and drop) or by
selecting them with Shift keys for cut, copy,
and paste. Strype’s editor enforces syntactic
validity, only allowing frames to be dropped
or pasted at correct positions. This ensures
the program always maintains correct
structure. Right-clicking a frame reveals a
context menu which displays more editing
options.

Layout: Strype automatically manages
code layout, including indentation,
whitespace, and line wrapping. This is
particularly beneficial for novices, especially
in Python where indentation defines
code structure, as it eliminates common
indentation errors.

Why should I try Strype?
Strype includes various editing supports
that improve on text-based editors, making

programming easier, quicker, and less
error-prone.

Flexible control structures: control
structures like ′if′ statements or loops can
be flexibly added or deleted. If frames
are selected, inserting an if-frame will
surround the selection, using it as the
body of the ′if′ statement. When deleting
a control structure, users can choose to
delete the entire statement (including its
body) or just the outer frame, leaving the
body in place, all with a single keystroke or
via the context menu.

Parameter prompts: when entering a
function name in a function call frame,
prompts for required parameters are
automatically displayed. This helps
programmers remember parameter
names, purposes, and with indicating
missing arguments.

Code completion: Strype supports code
completion, similar to other integrated
development environments. It is triggered
manually by typing Ctrl+Space (rather than
automatically) when entering a function
call, type name, or identifier. This prevents
distractions for beginners and allows users
to choose when to use the feature.

Programming with graphics: Strype
supports standard Python programs
with text-based console input/output and
includes a text console and standard Python
turtle graphics library. However, its novel
interactive graphics support allows for more
visual and engaging examples from the start.

Bring programs to life with graphics
Strype provides a graphics library, imported
in the ‘Imports’ section of a program,
which enables graphical output. When a
program produces graphics, the output
area automatically switches from the text
console to the Strype graphics world.

Media literals: images can be used as
literal values. To set the background of
the graphics world, the ‘set_background’
function can be used. Users can copy an
image (from the internet or local files), place
the cursor in the parameter slot, and paste it.
A small thumbnail of the image is displayed
in the code. Hovering over the image literal
provides simple editing options like scaling or
cropping. Sound literals are also supported
and can be similarly copied and manipulated.
The graphics library also includes an actor
class, which can receive an image when
created, and actor objects are automatically
displayed in the graphics world.

Animation: once an actor is on screen, it
can be moved using functions available in the
graphics API. Animation programs typically
involve an ‘infinite’ loop. The pace function

Frame-based editing offers several advantages over
both text-based and block-based editing:
n	� Reduced syntax memorisation: novices don't

need to remember complex syntax rules (such as
keywords like ′in′ or colons for loops); the editor
handles this automatically, allowing learners to
focus on semantics.

n	� Reduced typing effort: for younger learners,
typing can be a significant cognitive load. Frames
reduce this by creating entire statements with a
single keypress, leaving only text slots to be filled.

n	 �Improved readability and layout: coloured
frame backgrounds enhance the visual clarity of
program structure, and automatic layout prevents
indentation errors.

n	� Enhanced discoverability: the frame menu
provides a constant list of available statements,
reducing the need for memorisation.

Compared to block-based systems, frame-based
editors offer:
n	 �Keyboard-driven efficiency: while mouse

gestures are supported, all editing can be done
with the keyboard, improving efficiency for
proficient users.

n	� Reduced ‘viscosity’: editing at the expression
level is primarily keyboard-based, avoiding the
frustration of dragging new blocks for every small
element (like ′+′) common in block-based systems.

n	 �Traditional program layout: Strype arranges
program statements linearly, similar to
professional programming systems, making code
more understandable and maintainable than the
scattered, two-dimensional layout often found in
block-based environments. This facilitates easier
code reading, debugging, and management of
larger programs.

THE ADVANTAGE OF FRAMES

n ���Strype allows programmers to drag and drop frames but only with a valid
drop target (top of image) vs. an invalid drop target (bottom of image)

helloworld.cc 31

the context menu, facilitating the creation
of worksheets and teaching materials.

n	� Program sharing: programs saved
in cloud storage can be easily shared
with others, such as students, via a link.
Clicking the link loads a copy of the
shared program, which users can then
work with and save independently.

There is much more to discover about
programming in Strype. We cannot

discuss all the details here, so we will
end by pointing you to the most valuable
resource when working with Strype:
the Strype teachers’ lounge. Accessible
from strype.org, it is open to teachers at
public teaching institutions interested in
using or discussing Strype. The website
is private to prevent pupils from listening
in, allowing for free discussion of teaching
material and strategies. The Strype
development team is also present to
discuss ideas for system improvements
and extensions.

Our goal is to make programming more
accessible to more learners, and we hope
that Strype will be another tool in your toolkit
to bring your students’ programs to life.

controls the execution speed of the loop,
delaying execution to refresh the screen at a
specified rate (e.g. 30 frames per second).

Interaction: To create games, additional
graphical actors and interaction are needed.
Strype supports reacting to keypresses. For
instance, pressing left/right cursor keys can
turn an actor, creating a keyboard-controlled
animated character with minimal code. More
complex game examples are available in the
Strype menu under ‘Examples’.

Environment support
The Strype web-based environment offers
several features for teaching programming:

n	� Saving programs: programs can be
saved locally or to Google Drive (with
future support for other cloud storage
systems).

n	� Compatibility with standard Python:
standard Python code can be pasted
into the Strype editor and automatically
converted to Strype frames. Existing
Python programs can also be loaded,
simplifying the use of existing materials.

n	 �Image conversion: individual frames or
sequences of frames can be converted
into images via a built-in function from

n A simple program with graphics output

PIERRE WEILL-TESSIER
Pierre is a research associate at the King’s
College London Programming Educational
Tools (K-PET) research group, which
developed and maintains BlueJ, Greenfoot,
and Strype.

NEIL BROWN
Neil is a senior research fellow
King's College London and works as a
researcher and developer on several
educational programming environments,
including BlueJ, Greenfoot, and Strype.

MICHAEL KÖLLING
Michael is professor of computer science
at King's College London. He is a researcher
in computing education and author of
programming textbooks. He works on
educational development environments.
His past projects include the BlueJ and
Greenfoot systems.

STRYPE COMBINES THE SAFEGUARDS OF
BLOCKS WITH THE REALISM OF TEXT“

helloworld.cc32

hen I started teaching computer
science in the early 2000s, the UK

did not have a national curriculum, and the
only CS that was taught was a fairly niche
A-level qualification for students aged
16–19. (Advanced-level qualifications are
subject-based qualifications that can lead
to university, further study, or work.)

 The students who enrolled were often
already accomplished programmers,
having been self-taught or tutored by an
enthusiastic parent. They were almost all
boys, and most of them — outside school
— lived in their bedrooms writing code. This
is the cohort from which teenage hackers
such as the infamous Gary McKinnon and
Daniel Cuthbert emerged, figures whose
curiosity with computers led them into
high-profile trouble before some later
transitioned into cybersecurity careers.

Visual Basic
Like many of my teacher peers, I used Visual
Basic (VB) as a programming language to
deliver the programming components of the
computer science A level. Most UK textbooks
provided code examples in VB, and the
resources I inherited from the teacher I took
over from were also VB-based.

VB had a distinguished pedigree.
BASIC (Beginners’ All-Purpose Symbolic
Instruction Code) was promoted through
the BBC Computer Literacy Project in the
1980s and continued to be used into the
1990s. Many UK schools retained BBC
Micros well into the 1990s because of

W budget constraints and the robustness of
the machines. In the mid-to-late 1990s,
QBasic gained traction in schools that
moved to IBM-compatible PCs.

As the 1990s progressed, and more
schools upgraded to Windows-based
PCs, VB emerged as a natural successor
to earlier BASIC dialects. VB offered a
graphical user interface (GUI) design
environment, making it especially appealing
in an educational context, where drag-and-
drop interactivity supported visual learning
and rapid application development. It
allowed students to create simple programs
with buttons, text boxes, and menus,
bridging the gap between procedural code
and event-driven programming. As schools
moved into the 2000s, VB became the
programming environment of choice.

The rise of Python
A major shift occurred in the 2010s, when the
UK government overhauled the computing
curriculum. In 2014, ICT was replaced with
computing as a statutory subject, placing
a renewed emphasis on programming,
algorithms, and computational thinking from
Key Stage 1 (ages 5–7) onward. This marked
a move away from teaching how to use
applications and towards teaching how to
design and build them.

It was in this context that Python rose
to prominence. Favoured for its simple,
readable syntax and its wide use in
industry, Python was rapidly adopted by
teachers, exam boards, and education-

FROM BASIC TO PYTHON: FROM BASIC TO PYTHON:
A HISTORY OF A HISTORY OF

PROGRAMMING LANGUAGESPROGRAMMING LANGUAGES
Diane Dowling traces the use of programming languages in UK CSed and

explores the global impact of Python

focused organisations. It was promoted
through new GCSE and A-level computing
qualifications (qualifications needed to
progress to further education), supported
by resources from the Raspberry Pi
Foundation, Computing at School (CAS),
and the National Centre for Computing
Education (NCCE). Tools like Thonny and
Mu Editor made it easier for teachers to
introduce text-based programming without
the steep learning curve of older languages.

Python’s flexibility gave students a
language that was both beginner-friendly
and relevant to real-world software
development. By the late 2010s, it had
become the standard language for
teaching programming in UK schools,
effectively replacing both VB and the
remnants of earlier BASIC dialects.

International comparisons
While the UK’s shift to Python was driven
by centralised curriculum reform, other
countries have followed different paths to
adopting Python, shaped by local policies,
resources, and educational priorities.

United States
In the US, education is highly
decentralised, so no national directive
dictated programming language choices.
However, Python has steadily gained
popularity — especially in middle- and
high-school electives and in introductory
university courses, where institutions like
MIT helped pave the way by switching

helloworld.cc 33

from Scheme to Python. Python is also
supported in AP Computer Science
Principles, although Java remains the official
language for AP Computer Science A,
meaning that both languages are commonly
taught in parallel. In addition, JavaScript
maintains a strong foothold, particularly in
schools and programmes that emphasise
web development pathways, reflecting
the growing relevance of front-end
programming and industry-aligned skills.

India
India’s large and varied education system
shows a strong trend toward Python in
schools affiliated with national boards
like CBSE (Central Board of Secondary
Education), where Python has largely
replaced C++ and Java in the senior
secondary computer science curriculum. The
language’s accessibility and its alignment
with real-world programming skills make
it attractive for students aiming for careers
in technology. The rise of online coding
platforms and India’s thriving edtech sector
have both reinforced Python’s dominance at
both school and extracurricular levels.

Kenya
Kenya is in the midst of curriculum reform
through its Competency-Based Curriculum
(CBC), and while programming is still
emerging in mainstream classrooms,
Python is increasingly being taught in

private and international schools, and
through NGO-led initiatives. Programmes
such as Africa Code Week, AkiraChix, and
local Raspberry Pi Foundation outreach
efforts have brought Python into after-
school clubs and informal learning settings.

South Africa
In South Africa, high-school learners
traditionally studied Delphi in information
technology courses. However, there's a
growing push to modernise the curriculum,
with Python being introduced in pilot
programs and enthusiastically adopted
in extracurricular coding clubs. Several
South African universities, including the
University of Cape Town, have moved to
Python for first-year programming courses
— an influence that is filtering down into
secondary schools. Local groups like
Code4CT and GirlCode ZA are helping to
expand access and support.

So is Python a good language to use?
Python is widely used in schools because of
its clean, readable syntax and its ability to
lower the barriers to entry for programming.
For students encountering text-based code
for the first time, Python allows them to
focus on the logic of their programs without
getting bogged down by complex syntax
rules. It’s often possible for a student to
write and run their first program within
minutes — a simplicity that builds early

DIANE
DOWLING
Diane is director
of curriculum
and resources at
the Raspberry Pi
Foundation, where she
leads a team of talented
educators creating
resources for schools
and Code Clubs.

confidence and encourages experimentation.
This is particularly valuable in secondary
classrooms, where lesson time is limited and
engagement is critical.

However, while Python’s simplicity is
its greatest asset, there comes a point
at which Python’s design limits learning.
For instance, Python lacks true constants,
making it difficult to demonstrate
immutability. Python’s dynamic typing
hinders understanding of how different
types of data are stored. Its lists differ from
fixed-size arrays, preventing exposure to
concepts like array bounds and memory
layout. As an interpreted language, it
bypasses the compile–run–debug cycle.
Finally, Python's approach can confuse
novices with self and flexible class
models, complicating the explanation of
encapsulation and inheritance.

In summary, Python is an outstanding
language for teaching students how to
think algorithmically and how to write
clean, functional code. It is ideally suited
for introductory programming and general
problem-solving. However, when the
curriculum shifts toward the mechanics of
computation — such as constants,
memory, type systems, and low-level data
structures — Python’s high level of
abstraction can become a limitation. For
this reason, many educators who teach
older or more advanced students choose to
supplement Python with exposure to
languages like Java or C#, helping learners
to gain a fuller understanding of both the
theoretical and practical foundations of
computer science.

n ���Python has been used to build apps
such as Instagram and Spotify

©
 Fa

nta
 M

ed
ia/

sto
ck

.ad
ob

e.c
om

helloworld.cc34

ave you ever tracked a package,
streamed a movie, or ordered a

ride-share? If so, you’re using Java, one
of the world’s most trusted and widely
used programming languages. Across a
wide range of use cases, Java is powering
the apps (helloworld.cc/java-apps) and
services (helloworld.cc/java-uber) that
shape our lives. Bottom line, the world runs
on Java! Find more real-world examples at
Learn.java.

Java’s versatility, robustness, security
features, and ongoing evolution make it
an ideal choice for students preparing for
the tech workforce. There is tremendous
opportunity as Java becomes increasingly
integrated with AI services and tools. With
new features released every six months, Java
is more powerful — and more accessible —
than ever.

Java for today’s learner
If you haven’t seen Java since the early
2000s, you’ll be amazed by its modern
features. From simplified syntax for
beginners to robust new tools for seasoned

H professionals, Java is designed to help you
learn coding, solve problems, and build your
future. AI code assistants benefit greatly
from Java thanks to the large amount of
open-source Java code and its long history
of evolution to train upon. Even the most
basic and free large language models will
happily help you code in Java.

Java is the language of choice for many
introduction to programming courses and
the majority of data structures courses.
For example, the AP Computer Science A
course and exam, administered to nearly
95,000 students annually, uses Java as its
language of choice.

Learn.java for teachers and students
To support students and teachers, we’re
excited about our recent launch of Learn.
java — a vibrant new platform with
hands-on tutorials, lesson plans, inspiring
developer stories, and a powerful Java
Playground to experiment with code right in
your browser. Whether you’re an educator
seeking fresh resources or a student eager
to explore the world of programming, we

hope Learn.java will be your place to get
current information and stay up to date with
all the advancements in Java and how they
relate to education.

What’s new with Java?
Java 25 was released in September 2025.
Some features you might find engaging and
impactful for your students are:
n	� Compact source files and instance main

methods (Java 25)
n	� Records (Java 16)
n	� Switch expressions (Java 14)
n	� Pattern matching (Java 16, 21, 22, with

preview features in 25)

For a complete list, review our Educator
Briefings (helloworld.cc/ed-briefing).

Compact source files and instance main
methods
Instance main methods means your first
program is just a few lines. Great for
beginners and those who want to rapidly
prototype or try code snippets, compact
source files and instance main methods pave

the on-ramp for new and
experienced programmers
to write smaller programs
succinctly, without the
need for constructs
intended for programming
in the large.

A new IO class
simplifies input and
output. This class is
part of the java.
lang package and is
automatically made

UNLOCKING THE FUTUREUNLOCKING THE FUTURE
Java’s latest features and why every student should know them

n �An example of a new record type (Vehicle) and an object of this type being created using the Java Playground

helloworld.cc 35

available. The static methods in this class
are based on System.out and System.
in and include print(object obj),
println(), println(Object obj),
readln(), and readln(String
prompt).

Writing your first program is much more
accessible. Students can start writing
programs without having to spend time
learning a lot of new terms without context.
Teachers no longer need to explain such
things as what it means for a class to
be public or a method to be public
and static. The way println is called
follows the same pattern students will use
to call most methods in an introductory
computer science course.

More top-level classes are being made
available without needing to explicitly
import them. Programs will automatically
import the java.base module (helloworld.
cc/java-base). This module includes java.
util which makes working with data even
easier by allowing the use of ArrayList
without explicit import statements.

Records
Records let you store data simply and
securely — no more writing boilerplate
code. Released in Java 16, records allow

us to treat data as data instead of objects.
Records are simple to create and the right
tool for dealing with data we don’t want
to change. The way they are designed
protects the data from being altered,
making it the safer and right solution.

Switch expressions
Switch expressions extends switch
statements to be used as part of an
expression. How are switch expressions
different from switch statements?

n	� Switch expressions yield a value,
typically assigned to a variable.

n	� Switch expressions use the keyword
yield and do not require a break
statement, as yield will return a value
and the execution stops.

n	� Switch expressions require a semicolon
(;) at the end.

Pattern matching
Code is more readable with pattern
matching. Pattern matching checks the
structure of an object and then extracts
the data based on patterns. With pattern
matching, the compiler recognises patterns
in the code, making use of what it already
knows is true and allowing more succinct

CRYSTAL SHELDON
Crystal is an experienced computer science
teacher who is the former lead for AP
Computer Science A. Through her role as
Oracle's director of Java in Education, Crystal
works to support students, teachers, and CS
education providers using Java. She believes
that providing students with authentic
problems to solve makes computer science
more engaging for all.

statements to be written. Multiple pattern
matching features have been released over
several Java versions. There are currently
four pattern matching features, with more
to come in later releases.

Rediscover Java
Download the latest Java Development Kit
(java.com) and discover Java's new tools
like JShell, VS Code Extension, and all of the
new features.

Find a new lesson plan, try a tutorial, or
practise some code in the Java Playground
at Learn.java today.

JAVA'S VERSATILITY, ROBUSTNESS, SECURITY
FEATURES, AND ONGOING EVOLUTION MAKE
IT AN IDEAL CHOICE FOR STUDENTS

“

BEFORE AND AFTER JAVA 25

n �Prior to Java 25 n Java 25 and beyond

helloworld.cc36

dvanced level or A-level
qualifications are subject-based

qualifications that can lead to university,
further study, or work. For most A-level
computer science students (ages 17–18),
the programming project is a major
milestone. Worth around 20 percent
of the final grade, it gives students the
chance to take on a substantial, self-
directed piece of work over several
months. It’s a rare opportunity to go
beyond textbook exercises and instead
tackle something of interest in the real
world, manage a project, solve problems,
design and test from scratch, and build
their coding skills in the process.

One of the most important, and sometimes
contentious, decisions students face early on
is which programming language to use. The
short answer is almost anything — but some
clear favourites emerge.

A What languages are students
choosing?
Python: the undisputed leader in many
schools, Python is familiar from earlier
school stages, is easy to set up, and has a
huge ecosystem of libraries and tutorials.
Its simplicity makes it a safe choice for both
teachers and students, and it can handle
a wide range of project types, from games
with Pygame to web apps with Flask.

JavaScript: JavaScript is popular with
students building interactive websites, often
pulling in HTML, CSS, and frameworks
like React. Using JavaScript is a fast track
to visually impressive results, but some
teachers are wary of it, as it’s not always
aligned with exam specifications.

C#: C# is a strong structured language,
and when paired with Unity, it becomes
a gateway to 3D game development. But
frameworks like Unity can abstract much

of the ‘hard stuff’ that A-level projects
are meant to demonstrate, reducing
opportunities to show complexity.

PHP, C++, Swift, Rust, and others:
PHP works well for database-driven web
projects. C++ can be a good fit for hardware
work. Swift and Rust tend to be niche
choices, often driven by personal interest.
With these, checking exam board rules is
crucial, as not all languages are acceptable.

Whichever programming language our
students choose, as teachers, we have to
ensure that:

1.	� The language is appropriate for the
student’s skill level

2.	 We can support them in the language
3.	� It allows the project to meet required

level of complexity without being so
framework-heavy that the core logic is
hidden

Challenges for teachers
No one can be an expert in everything.
To streamline support and marking, some
teachers restrict projects to a single
language; others allow freedom, but only to
more capable students.

Adam Dimmick, head of digital learning
and a computer science teacher at Reading
School in England, explains his school’s
approach: “The vast majority of our students
will use the main taught language for the
bulk of their code — either Python or C#
— but I’ve had some projects in Rust, Lua,
Java, and Kotlin. Some use a combination,
like Python for server-side and JavaScript
for client-side. We typically expect students
to demonstrate proficiency in the language

PROGRAMMING LANGUAGE PROGRAMMING LANGUAGE
CHOICE IN A-LEVEL PROJECTSCHOICE IN A-LEVEL PROJECTS

How to support students when they choose their programming project

n �A-level computer science projects give students the freedom to choose their
programming language, but that freedom comes with challenges for teachers ©

 M
on

ke
y B

us
ine

ss/
sto

ck
.ad

ob
e.c

om

helloworld.cc 37

through some other (smaller) projects that
they’ve completed previously. It’s only ever
our highest-ability students that seek to use
a different language.”

New syntax and unfamiliar error
messages can make assessment slow and
difficult. Worse, it’s easy to miss plagiarism,
especially when students follow step-by-
step tutorials or copy AI-generated code.
Students’ enthusiasm can also lead to grand
visions: ‘I’ll build a multiplayer 3D RPG!’
Reality often hits when they run out of time
or can’t integrate the complex systems
they planned. Finally, school IT systems can
be the silent project killer. Installing new
languages or frameworks can be difficult,
especially if network administrators are
cautious about perceived security risks.

Practical support strategies
Before projects begin, offer a shortlist of
approved languages you know you can
support and that exam boards accept. Run
tech taster sessions early in the teaching
year, showcasing different techniques in
languages and frameworks that you are
happy to support, such as connecting
to a database, building a small object-
oriented programming (OOP) game, or

creating a basic web app. These are often
good jumping-off points for students’
project ideas. Help students set realistic
project scopes, and explain how their
language choice will impact complexity
and assessment. Highlight skills, such as
using OOP or database work, that they can
transfer into exam skills.

Johanna Watkins, head of computer
science at Highcliffe School in Christchurch,
England, explains: “I let students choose
their own programming language. The
less confident usually stick with Python,
while the more able often try something
new before heading to university. Since the
project work is independent, I’m not worried
if I can’t give hands-on help, especially when
a language is a better fit for their idea. I point
them towards reliable websites so they can
teach themselves. In my experience, it’s only
the top students who step outside their
comfort zone, and most have a pretty good
sense of their own abilities.”

During the project, encourage self-
documentation. Students should be
creating comments, development logs, and
short write-ups explaining code choices
and algorithms. These will be helpful for
documenting the project and proving they

LAURA JAMES
Laura is a learning manager in the Ada
Computer Science team at the Raspberry Pi
Foundation. She is an enthusiastic computing
educator with more than a decade of
experience in secondary education.

wrote the code. Schedule checkpoints where
students can demonstrate progress, or use
GitHub commits which you can review.

Isabel Culmer, a computer science teacher
at Barton Peveril Sixth Form College in
Eastleigh, England, outlines her approach:
“We do a ‘viva’. We have a deadline for the
technical solution. After that, we sit for 20
minutes with each student for them to talk
us through their solution, and we give them
a mark. We do this in lesson time when
the rest of the class are writing up design,
testing, and evaluation.”

Conclusion
A-level programming projects are a brilliant
opportunity for students to explore and
innovate. But freedom without guidance
can lead to frustration, incomplete work,
and teacher burnout. The sweet spot is
structured choice: give students the
freedom to pick from a range of viable
languages, help them set goals, and
support them with general coding
principles. Make them responsible for
explaining and justifying their work, and
you’ll help them develop skills that matter in
the real world. The lessons they learn will
last much longer.

A-level computer science projects give students
the freedom to choose their programming language,
but that freedom comes with challenges for teachers.
Here’s how to keep projects achievable and
assessment manageable.
1. Curate the choices
Offer a shortlist of approved, exam-compliant languages
you can support. Include pros and cons for each so
students can make informed decisions.
2. Set realistic scopes
Guide students to match ambitions with their skills and
the time available. Framework-heavy tools (such as
Unity) can hide complexity, so ensure projects still meet
marking criteria.
3. Build early foundations
Run taster sessions showing different languages and

frameworks in small, achievable projects. Highlight
transferable skills like OOP and database integration.
4. Encourage documentation
Ask students to log progress, comment on code, and
explain design decisions. This helps with assessment and
reinforces understanding.
5. Support without knowing it all
Focus on language-agnostic principles, logic,
structure, and problem-solving, so you can guide even in
unfamiliar syntax.
6. Use your network
Share resources with colleagues, and encourage peer
mentoring among students.
With clear boundaries and collaborative support,
students can explore creatively while staying within a
framework that sets them up for success.

TEACHER TIPS: SUPPORTING A-LEVEL
PROJECTS IN MULTIPLE LANGUAGES

helloworld.cc38

I started vibe coding in September
2024 to make time-saving tools

for teaching, including a Python display
tool, a mindmap editor, and story dice
(helloworld.cc/jsfun).

Vibe coding is an AI-enhanced approach
to programming that prioritises natural
language input, visual interaction, and fast
iteration. Although the term ‘vibe’ is often
used as shorthand, it was popularised by AI
expert Andrej Karpathy in 2025 to describe
the process of creating code through
conversational, intuitive prompts, rather
than traditional syntax. He describes it as: “I
just see stuff, say stuff, run stuff, and copy-
paste stuff, and it mostly works.”

Tools such as ChatGPT, Google Gemini,
GitHub Copilot, and Canva enable students
to quickly generate code or designs based
on plain-language descriptions. These
platforms typically require users to be aged
13 or older, and teachers should check age

restrictions and usage policies carefully
before introducing them in the classroom.

When integrated with structured
pedagogical approaches, vibe coding
creates an engaging, inquiry-driven
experience that supports both creativity
and conceptual understanding.

The International Baccalaureate Middle
Years Programme (MYP) encourages
students aged 11–16 to explore learning
through inquiry, creativity, and real-world
connections. One of its core components is
the MYP design cycle, a structured model
used across subjects to guide students in
solving problems through four key stages:
inquiring and analysing, developing ideas,
creating the solution, and evaluating
(helloworld.cc/myp-design-cycle).

Classroom structures
To guide and deepen the MYP design
cycle experience, teaching frameworks
such as PRIMM (Predict–Run–Investigate–
Modify–Make) support learners in
understanding and experimenting with
code in a structured way (helloworld.
cc/qr-primm). To complement PRIMM, I
developed my own informal framework
— PROPER — as a simple way to help
students think more independently,
especially when prompting AI tools.

PROPER stands for Purpose–Readability–
Organisation–Patterns–Errors–Refinement.
These prompts support students in asking
thoughtful questions about the code they
receive or generate. For instance, they might
reflect on the Purpose of the code (what is
it trying to achieve?), assess its Readability
(can someone else understand it?), and
consider how well it is Organised.

They then look for common Patterns,
check for Errors, and think about how

PRIMM AND PROPER VIBE CODINGPRIMM AND PROPER VIBE CODING
What happens when students bring ChatGPT, GitHub, and Canva into the
classroom? James Abela looks at vibe coding with PRIMM and PROPER

JAMES ABELA
James is director of digital learning and
entrepreneurship at Garden International
School in Kuala Lumpur, Malaysia. He is
founder of the South East Asia Computer
Science Teachers’ Association and
ReadySetCompute.com.

n ��Teachers from across Malaysia came together to learn about vibe coding
with Google Gemini and the Experience AI course (experience-ai.org)

helloworld.cc 39

the code could be Refined. This reflective
process is especially valuable when using
AI tools, as students must still evaluate and
improve the suggestions provided.

Together, PRIMM and PROPER provide
a structured yet flexible pathway for
developing programming skills, such as
within the MYP design cycle. Students
might begin with JavaScript, where they can
create interactive web-based projects and
experiment with user input and animations.

As their skills grow, they can transition
to Python to deepen their understanding of
programming logic using loops, conditionals,
and functions in projects such as score
calculators or chatbots. In both languages,
students are encouraged to reflect on their
process, make informed changes, and
articulate how and why their code works.

Prototyping with AI
One of the most powerful applications
of vibe coding is for rapid prototyping —
quickly developing testable versions of
programs or designs. This aligns closely

with the ‘developing ideas’ and ‘creating the
solution’ stages of the MYP design cycle.
For example, prompting ChatGPT with
‘Write a Python program for a number-
guessing game’ can generate a draft ready
for analysis and refinement.

Canva can similarly support prototyping
in web design or visual communication
tasks. When guided by PRIMM and
PROPER, this process helps students test,
explore, and improve their work through
structured inquiry and iteration — mirroring
practices that are used in real-world
software and product development.

Vibe coding encourages a shift from
passive learning to active experimentation.
It invites students to engage critically with
tools, develop a better understanding of
programming concepts, and experience
immediate feedback. When used together
with intentional scaffolding such as PRIMM
and PROPER, it becomes more than just
a way to generate code — it becomes a
springboard for inquiry, creativity, and
thoughtful reflection.

AI performance
While vibe coding makes it easy to get
started across many languages, some
languages are handled more effectively
by AI tools than others. The table on the
left provides a general overview of how
ChatGPT currently performs with different
programming languages in educational
contexts.

Vibe coding, while engaging and
accessible, has clear limitations that
educators must consider. Within just three to
five prompts, AI-generated code can begin
to degrade — introducing bugs, removing
original features without explanation, or
hallucinating solutions that do not work.
These issues become more frequent in
larger projects. In my experience, reliability
often declines after about 300 lines of code.
Without a firm foundation in programming
concepts, students may struggle to
troubleshoot or understand what their code
is actually doing.

Yet despite these challenges, vibe coding
remains a valuable entry point, particularly
when paired with frameworks such as
PRIMM and PROPER. These structures
help learners move beyond surface-level
interactions to develop more resilient,
purposeful code.

When used well, vibe coding can spark
curiosity, support creative problem-solving,
and lay the groundwork for deeper learning.
It offers a clear opportunity to introduce
core programming concepts in a way that
feels relevant, empowering, and adaptable
to a range of learners.

AI PERFORMANCE

Language AI support quality Notes

JavaScript Very good Ideal for interactive web projects and beginner
tasks. Frequently used in vibe coding.

Java Good Well-supported, but more verbose. Useful for
structured, object-oriented examples.

C/C++ Moderate Needs precise prompts. Can be unsafe without
strong guidance.

Python Very good Highly readable and versatile. Works well for
quizzes, chatbots, and data tasks.

C# Good Especially strong in Unity contexts. Works well with
specific prompting.

Swift Moderate Good for simple iOS tasks. Less reliable for
advanced use without clarification.

Low-level / niche
languages

Inconsistent Less exposure during training. May need manual
correction.

n ���The PROPER framework helps encourage students to reflect on the code
they produce when vibe coding

Source: OpenAI usage data and documentation

helloworld.cc40

he digital divide became starkly
apparent during the Covid-19

pandemic, when many of my students
lost access to online learning resources.
I understood the challenge first-hand.
As a first-generation immigrant, I learnt
programming as an English Language
Learner in rural central Pennsylvania, USA,
where internet service was available but
often unaffordable for families. While
districts scrambled to provide connectivity
and resources during the pandemic, I
focused on a different approach: delivering
offline education, using technology which
didn’t require internet access.

I work at a regional education service
agency, the Tuscarora Intermediate Unit
(tiu11.org), which supports nine rural
school districts in Pennsylvania. During this
time, we deployed Kolibri on Raspberry
Pi devices. Kolibri (learningequality.org),
developed specifically for disconnected
learning environments, became our solution
for reaching students whose families
couldn’t afford reliable internet service. This
enabled students without internet access
to receive the same resources and materials
as students with internet access. These
small computers became educational hubs,
delivering content and assessment directly
to student devices through local networks.

One of our projects involved developing
a Python course that taught students
to program flight patterns for Parrot
Mambo drones — all delivered through
Kolibri’s offline platform. Students learnt
programming fundamentals while controlling
real hardware and building software with

T real-world applications; programming
drones was especially pertinent during the
pandemic when they were used to deliver
medicine in remote areas.

The results challenged my assumptions
about online versus offline learning.
Students engaged more deeply with
programming concepts when they weren’t
competing with internet distractions or
worried about data usage. They spent more
time debugging code and understanding
logic rather than copying solutions from
online forums. Most importantly, students in
rural areas with limited financial resources
could participate equally in computational
thinking activities.

This experience also highlighted a
critical gap in computer science education.
When students get stuck on programming
problems, whether debugging code,
understanding syntax errors, or learning
new concepts, their first instinct is to search
online. They expect to google error messages
or watch YouTube tutorials. However, the
students I serve often live in areas with
limited or no internet access. These students
face a fundamental learning barrier.

Computational thinking without
connectivity
Offline programming naturally emphasises
logic over tools. Without internet access,
students can't rely on copying code
snippets or following tutorials mindlessly.
They must understand loops, conditionals,
and functions at a fundamental level. Our
local Python installations paired with Parrot
Mambo drones provided hands-on learning,

where students programmed real flight
patterns, immediately seeing the results of
their logical thinking.

The Raspberry Pi’s GPIO pins opened
additional possibilities for physical
computing. Students connected sensors
and LEDs directly to create weather
monitoring systems, which we later utilised
for monitoring hydroponics and aquaponics.
These projects taught programming
concepts through tangible outcomes — a
blinking LED confirmed their conditional
statements worked and sensor readings
validated their data-processing algorithms.

Using this offline method, students
demonstrated understanding through
working code that controlled actual
hardware rather than selecting answers
from a formative assessment. Without
online forums to copy from, project-based
learning flourished.

Most importantly, this approach prepares
students to collaborate with AI rather than
creating dependency. When we eventually
introduced AI tools in school, students who
understood programming fundamentals
through offline practice grasped machine-
learning concepts more readily. They
approached AI platforms as tools to
enhance their problem-solving rather than
as magic solutions.

Local AI tutors
While offline programming addresses the
digital divide, a new challenge emerges:
the AI access divide. Currently, AI-
powered educational tools require internet
connectivity and subscription fees, creating

OFFLINE PROGRAMMING OFFLINE PROGRAMMING
IN THE AGE OF AIIN THE AGE OF AI

How every student can learn computational thinking and
AI concepts, regardless of access to the internet

helloworld.cc 41

additional barriers for disconnected learners.
The numbers highlight the problem. Only

57 percent of families earning less than
$30,000 annually have internet access at
home (helloworld.cc/us-internet). Rural
internet penetration remains at 73 percent
compared to 86 percent in suburban areas.
For families who do access the internet, AI
tools present additional financial barriers.
ChatGPT Plus costs $20 a month, as do
Claude Pro, Perplexity AI Pro, etc. Free
users cannot opt out of data training,
requiring paid plans for privacy protection.

This creates a two-tiered system
where AI-enhanced education becomes
another privilege for those who can afford
connectivity and subscriptions.

My current exploration focuses on
deploying lightweight language models
directly on Raspberry Pi devices alongside
Kolibri. Models like Microsoft's Phi-3 and
Phi-4, and Google’s Gemma show promise
for running locally on Raspberry Pi 4 and

Raspberry Pi 5 hardware, while teaching
computer science concepts aligned with
CSTA standards (helloworld.cc/csta-
standards).

The vision is to provide a $75 Raspberry
Pi that offers 24/7 AI programming
tutoring, eliminating internet dependency
and subscription costs. Students could
receive personalised coding assistance,
debugging help, and concept explanations
while working through offline exercises. The
same device serving Kolibri content could
simultaneously run an AI tutor, creating a
complete offline-learning ecosystem.

The potential impact extends beyond
individual learning. Rural schools could
deploy these systems to provide AI-
enhanced computer science education
without requiring reliable internet or ongoing
costs. Libraries and community centres could
offer AI-powered programming assistance
to entire communities. Most importantly,
students in economically disadvantaged
areas could access the same AI-enhanced
learning experiences available to their
connected peers.

JIGAR PATEL
Jigar is the director of innovation &
special projects at Tuscarora Intermediate
Unit 11 and vice president of the CSTA
Susquehanna Valley Chapter. He is also
a Raspberry Pi Certified Educator and an
alumnus of the CSTA Equity Fellowship.

OFFLINE LEARNING PREPARES STUDENTS TO
WORK WITH, RATHER THAN DEPEND ON, AI“

This addresses a fundamental equity
issue. Rural students and low-income
families are unable to access AI-enhanced
education due to barriers created by limited
internet connectivity and high subscription
costs. The result is that future developers
will come primarily from connected,
affluent communities. Offline AI tutoring
changes this dynamic. A student in rural
Pennsylvania gains access to the same
programming assistance available to peers
in well-connected areas. When we include
diverse voices in CS education — students
from farming communities, immigrant
families, and economically disadvantaged
backgrounds — we build stronger
technology solutions for everyone.

Conclusion
The future of computer science education
must include pathways for economically
disadvantaged learners and those in rural
areas. By building offline programming
curricula and exploring localised AI
deployment, we ensure every student
develops computational thinking skills
necessary for an AI-integrated world.
Sometimes, the most inclusive approach to
cutting-edge education involves stepping
back from connectivity requirements and
focusing on fundamental skills that
transcend technological barriers.

©
 ch

ris
tia

n.b
itz

as/
sto

ck
.ad

ob
e.c

om

n ��Affordable computers like Raspberry Pi, paired with
an offline learning platform like Kolibri, could provide
access to AI for rural and low-income learners

helloworld.cc42

or traditional subjects like maths
or science, most K–12 teachers

have years of exposure, both as students
and through formal training within
their teacher preparation programme.
Computer science is a relatively new
addition to the curriculum, and here in
Iowa in the United States, many K–12
teachers are stepping into the role of
computer science instructors with little
to no prior experience in the subject.
This creates a unique and often daunting
situation: teachers are learning the
content themselves while simultaneously
teaching or preparing to teach it.

Working with teachers placed in this
situation has given us a unique opportunity
to consider the intersection between the
teaching and learning of programming
by asking these teachers to reflect on the
often-overlooked elements of programming.
This article summarises the most common

F takeaways mentioned by these teachers as
they reflect on their learning, and how they
will translate to their own classrooms.

Background
In order to better prepare in-service
teachers to become computer science
teachers, our programme offers an
18-month cohort-based programme
where groups of teachers from across
Iowa complete five courses. Upon
completion of the programme, they
can apply for the state’s computer
science endorsement on their teaching
licence (helloworld.cc/diesburg). Since
the summer of 2023, our programme
has worked with over 220 teachers.
As demonstrated by our cohort from
2024, they come from a surprisingly
wide variety of grade bands (Figure 1),
disciplines (Figure 2), experience levels
(Figure 3), and comfort levels (Figure 4).

Within this programme, there are two
courses that help participants broaden their
skills as teachers of programming. The first
course, ‘Fundamentals of Programming’,
begins with five weeks of Scratch, where
they learn the foundational vocabulary
and structure of programming. They then
transition to ten weeks of problem-solving
using Python. In the second course, ‘Teaching
and Learning of Programming’ (TLP), they
continue their journey as programmers
while considering teaching techniques in
the context of both their learning journey
and their own classrooms. This course uses
The Big Book of Computing Pedagogy
(helloworld.cc/bbcp) as its main textbook —
you can read more about our choice to use
this resource at helloworld.cc/schafer.

As part of the wrap-up for the TLP course,
participants respond to writing prompts
asking them to identify the key concepts and
skills of programming as well as what they

TEACHING AND LEARNING TEACHING AND LEARNING
PROGRAMMINGPROGRAMMING
Educators reflect on the dual challenge of learning to

program while teaching programming to students

60

Math

Scie
nc

e
Soc

ial
 Stud

ies
Eng

lis
h/R

ea
din

g
Gen

era
lis

t

CTE
Bus

ine
ss Art

Mus
ic PE

Fo
rei

gn
 La

ng
ua

ge
/ELL TA

G
Cou

ns
elo

r
Lib

rar
y S

cie
nc

e
Spe

cia
l E

du
ca

tio
n

Adm
ini

str
ati

on

Othe
r

50 48
50

40

30

20

10

0

Endorsements

28

44

24

9
3 4 5

8
1

10 1011
14

11 11

3-5 (23%)

K-2 (5%)

9-12 (39%)

6-8 (33%)
n ��� ��Figure 1 Cohort ‘24 participants’,

grades taught

n ��� ��Figure 2 Cohort ‘24 participants’ discipline areas,
including Career and Technical Education (CTE) and
Talented and Gifted (TAG) endorsements

helloworld.cc 43

have learnt about teaching programming.
The final prompt asks them to reflect on their
journey as a programmer and to identify
the biggest takeaways from their learning
over the previous two courses. While this
question was meant as a simple wrap-up
of the previous writing prompts, participant
responses have been incredibly insightful.
Here are some of the major points, from both
a learner perspective and a pedagogical/
teaching perspective.

Learner perspective
While some teachers had prior coding
experience, many had none. The following
are some of their takeaways:

n	 �Even if your end goal is to learn a text-
based programming language, it can
help to start with something visual
like Scratch. Many of our teachers
appreciated starting with Scratch in
their programming journey. One teacher
said, “When I started on this adventure
last summer, I was someone who had
never tried anything with programming
or coding. I was a novice programmer
at best, but even that is a stretch. I
loved the block coding that we started

with. It was a great way for me to
feel like I had actually accomplished
something.” Others found it reduced
initial intimidation and stress in learning
programming: “I appreciated that last
semester started off with learning
Scratch. I feel like that helped us learn
the basics of programming without the
stress and worries about the syntax,
like remembering to include a semicolon
here or a comma there.” Finally, other
teachers found it was good for seeing
abstract concepts in that it “helped me
to visualise the program and perform
code tracing before I realised what code
tracing was”.

n	 �While the initial learning journey
can be rife with frustration when
something doesn’t work, confidence
can be built in a variety of ways. For
some, it’s a shift in mindset around
the unknown. One wrote, “While
technical skills are essential, I’ve come
to understand that learning to program
is just as much about developing
problem-solving confidence and
learning to be comfortable with not
knowing something — yet.” One teacher
recognised that they needed to combat

feelings of not being good enough,
and so it’s important to cultivate an
environment in which “mistakes are
seen as part of the learning process
rather than signs of failure”. Another
teacher stated, “Struggling with bugs
or hard problems isn’t a sign of failure,
it’s a normal and expected part of
programming.” One teacher summed it
up nicely: “Productive struggle is where
the greatest learning occurs.”

n	� Don’t overlook the small wins. The
ability to apply learnt concepts to solve
real-world problems, even small ones,
can significantly contribute to growth.
One teacher shared, “When I get even
a small block of code to work, it helps
me to see that I’m moving in the right
direction.” These small wins can be
even more impactful if they are used
to solve small, practical problems of
personal interest. Two examples from
teachers included using Python to sort
data for a fantasy baseball draft, and
using it to organise and analyse what
they do for a bakery business.

n	� It’s important to understand the
problem before you code. There is a
tendency, especially with graphical and
visual languages such as Scratch, to start
to code through trial and error. Many of
our teachers admitted that it took them a
while to realise that planning the solution
before starting was an essential part
of the process. One teacher summed it
up nicely: “Planning has also become
a bigger part of my process. Before
starting to write any code, I’ve learnt

TEACHERS
ARE LEARNING
TO PROGRAM
THEMSELVES
WHILE TRYING TO
TEACH IT

“

n ��Preparing in-service teachers to become computer science teachers

helloworld.cc44

to take the time to sketch out what I
want to achieve, what the user needs,
and how each step should logically
follow the next. This isn’t just about
avoiding mistakes — it’s about setting a
solid foundation so that I don’t have to
backtrack later. The more thought I put
into the planning process, the smoother
the coding and debugging stages are. As
we’ve learnt, jumping straight into coding
without a plan can lead to confusion and
unnecessary errors.”

n	� Debugging and testing code are
important, too. The shift from seeing
debugging as a chore to an essential
learning experience is important. As
one teacher put it, “Almost all the code
I wrote during the previous class did
not work the first time; I had to debug
and fix every program I wrote. This
debugging and correcting my mistakes
is where I learnt the most about coding.”
However, debugging goes beyond just
getting the code to work. Testing the
code is also where the learning takes
place. As one teacher shared, “I have
grown as a programmer, because I have

eliminated the misconception that just
because the program runs, it is correct.
This was a hard concept for me to come
to grips with; additionally, it’s harder for
students to understand.”

Pedagogical and teaching perspective
Teachers considered teaching techniques
both in the context of their learning journey
and what would work in their classrooms:

n	� Don’t overlook teaching strategies
that involve reading code before
writing code. Teachers thought
strategies like PRIMM (Predict–Run–
Investigate–Modify–Make; helloworld.
cc/primm) and Parson's Problems
(helloworld.cc/parsons-problems) were
helpful for building program reading
comprehension and for understanding
problem-solving while providing
scaffolding. One teacher shared, “I've
also started using PRIMM in my own
classroom. It gives my students a clear
structure to follow, which helps build
their confidence. Instead of feeling like
they must understand everything at
once, they can focus on just one part at
a time.”

 n	� Not all activities need to be done at
the computer. Many teachers saw the
value of unplugged activities, where
students can get up, move around, and

BEN SCHAFER
Ben is a professor of computer science at
the University of Northern Iowa, as well
as coordinator of their computer science
education programme. If he could figure out
how to do that from a kayak, he would.

SARAH DIESBURG
Sarah is an associate professor of computer
science at the University of Northern Iowa
and a proud member of the CS education
team. She is currently trying to master the
algorithms for playing the guitar.

Years Teaching Computer Science

44%

14%

12%

6%

6%

5%

4%

3%1% 5%

10 or more0 1 2 3 4 5 6 7 8

Years Teaching Computer Science

44%

14%

12%

6%

6%

5%

4%

3%1% 5%

10 or more0 1 2 3 4 5 6 7 8

Years Teaching Computer Science

44%

14%

12%

6%

6%

5%

4%

3%1% 5%

10 or more0 1 2 3 4 5 6 7 8

Comfort Level

1 2 3 4 5

3
40%

4
28%

2
18%

1
5%

5
9%

Comfort Level

1 2 3 4 5

3
40%

4
28%

2
18%

1
5%

5
9%

n ��� �Figure 3 Cohort '24 participants’, years teaching computer science n ��Figure 4 Cohort '24 participants’, comfort level with
computer science from low (1) to high (5)

TEACHERS WHO ARE LEARNING TO
PROGRAM CAN RELATE TO THEIR STUDENTS“

helloworld.cc 45

learn programming topics by solving
problems away from the computer. One
teacher had this to say about the use of
unplugged activities for first-time coders:
“My students understood the concept
much better than when they only saw it
on a screen or listened to me talk about
it. I realised that not all students learn
best by typing code; some need to move,
talk, and interact. Unplugged activities
help reach those learners.”

n	� Observing live coding demonstrations
helped teachers to both learn to
program and to plan to use this
technique in their classrooms. One
teacher shared, “I did more live coding
and live debugging with my students
around the concept of variables, as the
[Big Book of Computing Pedagogy]
suggested. I saw a significantly higher
number of students successfully using
variables, with much less confusion
about their purpose and importance,
compared to my past students.”
However, it’s important to note that
making mistakes is also OK! Another
teacher noted, “Seeing the emphasis on
live coding and worked examples has
helped me embrace a more iterative,
mistake-friendly approach to learning
and teaching code.”

n	� Learning should not always be done
alone, and collaboration with peers can
be essential to the learning process.
Pair programming and small group
discussions, such as with Process-
Oriented Guided Inquiry Learning

(pogil.org), can be very helpful. One
participant observed, “Working together
allows students to piece together
information and solidify their definition
of a concept. Students also learn to
share the cognitive load. When students
work in pairs, one student can focus on
the problem and the other can work on
the implementation.”

n	 �Code quality matters. A lot of the
teachers remarked on the importance
of good code (clean, efficient, readable)
versus smelly code (inefficient, unclear
code). One teacher put it this way: “I
spend time optimising the way my
workshop is set up, the way my office is
set up, the way my classroom is set up.
If I didn’t do that, my shop, office, and
classroom would still work. I could still

get the same stuff done, but it would be
extremely inefficient. I’d constantly run
into inefficiencies that would drive me
nuts and make my jobs harder. Seeing
this concept officially taught [in the
context of programming] was great.”

Conclusion
Being new to programming when teaching
programming to students can be a
strength. As one teacher shared, “The
biggest benefit of learning a new
programming language is that I feel like I
can better relate to what my students are
going through as they are learning to code
as well.” As professors, we appreciated the
candid reflections of our teachers and are
happy to share these valuable takeaways
with Hello World!

Diesburg, S., Schafer, J. B., & Morrison,
B. B. (2025, February). Curriculum for a
Comprehensive Statewide In-Service CS Teacher
Training Program. In Proceedings of the 56th
ACM Technical Symposium on Computer Science
Education V. 1 (pp. 255–261) (helloworld.cc/
diesburg)
Schafer, B. & Rogers, C. (2024). USA: Training
Computer Science Teachers. Hello World 23,
23–24 (helloworld.cc/schafer)

FURTHER READING

n Teachers trying out unplugged activities

helloworld.cc46

enerative AI (GenAI) tools like
GitHub Copilot and ChatGPT

are rapidly changing how programming
is taught and learnt. These tools can
solve assignments with remarkable
accuracy. GPT-4, for example, scored an
impressive 99.5 percent on introductory
programming exams, compared to
OpenAI Codex’s 78 percent just two years
earlier (helloworld.cc/denny). With such
capabilities, researchers are shifting from
asking, ‘Should we teach with AI?’ to
‘How do we teach with AI?’

Leo Porter and Daniel Zingaro have
spearheaded this transformation through
their groundbreaking undergraduate
programming course at UC San Diego,
USA. Their innovative curriculum integrates
GenAI tools to help students tackle complex
programming tasks while developing critical
thinking and problem-solving skills.

Leo and Daniel presented their work
at a Raspberry Pi Foundation research
seminar in December 2024. During the
seminar, it became clear that their insights
have particular relevance for teachers in
secondary education thinking about using
GenAI in their programming classes.

Practical applications
In 2023, Leo and Daniel introduced
GitHub Copilot in their introductory
programming course, with large language
models at its centre. The course included
creative, open-ended projects that allowed

G the 552 participating students to explore
their interests while applying the skills
they’d learnt. The projects covered the
following areas:

n	� Data science: students used Kaggle
data sets to explore questions related
to their fields of study — for example,
neuroscience majors analysed stroke
data. The projects encouraged
interdisciplinary thinking and practical
applications of programming.

n	� Image manipulation: students worked
with the Python Imaging Library to
create collages and apply filters to
images, showcasing their creativity and
technical skills.

n	� Game development: a project focused
on designing text-based games
encouraged students to break down
problems into manageable components
while using AI tools to
generate and debug
code.

Students consistently
reported that these
projects were not only
enjoyable but also
responsible for deepening
their understanding of
programming concepts. A
majority found the projects
helpful or extremely helpful
for their learning.

Core skills for programming
Leo and Daniel emphasised that teaching
programming with GenAI involves fostering
a mix of traditional and AI-specific skills
(Figure 1 provides an example of this).
The approach for their course centred on
six core competencies:

n	� Prompting and function design:
students learnt to articulate precise
prompts for AI tools, honing their ability
to describe a function’s purpose, inputs,
and outputs, for instance. This clarity
improved the output from the AI tool
and reinforced students’ understanding
of task requirements.

n	 �Code reading and selection: AI tools
can produce any number of solutions,
and each will be different, requiring
students to read and evaluate the
options critically. Students were taught

INTEGRATING GENERATIVE INTEGRATING GENERATIVE
AI INTO INTRODUCTORY AI INTO INTRODUCTORY

PROGRAMMING CLASSESPROGRAMMING CLASSES
Bonnie Sheppard explores a course which encourages us to work with, and not against, GenAI tools

n ��Figure 1 Writing software with GenAI applications needs to
be approached differently to traditional programming tasks

helloworld.cc 47

to identify which solution was most
likely to solve their problem effectively.

n	� Code testing and debugging: students
practised open- and closed-box testing,
learning to identify edge cases and
debug code using tools like doctest and
the Visual Studio Code debugger.

n	� Problem decomposition: breaking
down large projects into smaller
functions is essential. For instance,
when designing a text-based game,
students might have separated tasks
into input handling, game-state
updates, and rendering functions.

n	� Leveraging modules: students explored
programming domains and identified
useful libraries through interactions with
Copilot. This prepared them to solve
problems efficiently and creatively.

n	� Ethical and metacognitive skills:
students engaged in discussions about
responsible AI use and reflected on the
decisions they make when collaborating
with AI tools.

Adapting assessments for the AI era
The rise of GenAI has prompted educators to
rethink how they assess programming skills.
In Leo and Daniel’s course, traditional take-
home assignments were de-emphasised
in favour of assessments that focused on
process and understanding. The researchers
chose several types of assessments — some

involved having to complete programming
tasks with the help of GenAI tools, while
others had to be completed without. For
example, quizzes were used to evaluate
students’ ability to read, test, and debug
code — skills critical for working effectively
with AI tools. Final exams included both
tasks that required independent coding
and tasks that required Copilot. Students
also submitted projects alongside a video
explanation of their process, emphasising
problem decomposition and testing. This
approach highlighted the importance of
critical thinking over rote memorisation.

Challenges and lessons learnt
While Leo and Daniel reported that the
integration of AI tools into their course
has been largely successful, it has also
introduced challenges. Surveys revealed
that some students felt overly dependent
on AI tools, expressing concerns about
their ability to code independently (Figure
2). Addressing this will require striking a
balance between leveraging AI tools and
reinforcing foundational skills.

Additionally, ethical concerns around
AI use, such as plagiarism and intellectual
property, must be addressed. Leo and Daniel
incorporated discussions about these issues
into their curriculum to ensure students
understand the broader implications of
working with AI technologies.

A future-oriented approach
Leo and Daniel’s work demonstrates that
GenAI can transform programming education,

n ��Figure 2 Survey results

making it more inclusive, engaging, and
relevant. Their course attracted a diverse
cohort of students, as well as students
traditionally underrepresented in computer
science — 50 percent of the students were
female and 66 percent were not majoring
in computer science — highlighting the
potential of AI-powered learning to broaden
participation in computer science.

By embracing this shift, educators can
prepare students not just to write code but
to also think critically, solve real-world
problems, and effectively harness the
innovations in AI which are shaping the
future of technology.

BONNIE SHEPPARD
Bonnie is the programme coordinator in
the research team at the Raspberry Pi
Foundation. A former secondary-school
teacher and lecturer, she is interested in
translating research into practice.

Vadaparty, A., Zingaro, D., Smith IV, D. H., Padala,
M., Alvarado, C., Gorson Benario, J., & Porter,
L. (2024). CS1-LLM: Integrating LLMs into CS1
Instruction. In Proceedings of the 2024 on
Innovation and Technology in Computer Science
Education v. 1 (pp. 297–303). (helloworld.cc/
vadaparty)
Porter, L. & Zingaro, D. (2024) Learn AI-Assisted
Python Programming (2nd ed.). Manning.
(helloworld.cc/porter)
Porter, L. & Zingaro, D. (2023). Courseware for
CS1 courses that incorporate LLMs [Data set].
GitHub. (helloworld.cc/cs1-llm)

FURTHER READING

helloworld.cc48

hen I first began teaching
programming, I’ll admit I was

intimidated. Not by the students, not by
the content, but by the pace of change in
computer science education. The world
of programming evolves faster than most
subjects, and staying current felt like trying
to catch a moving train. I knew that to be
effective and confident in the classroom,
I would need to commit to continuous
professional development (CPD). What
I didn’t realise at the time was just how
transformative that journey would be —
not just for my teaching practice, but for
my own identity as an educator.

Getting uncomfortable
My first serious dive into professional
learning came through a summer coding
bootcamp. I went to sharpen my Java
and Python skills, but gained much more:
a community of educators who were
as hungry as I was to learn and grow.
Surrounded by teachers from across the
United States, I realised that we all shared
similar fears, doubts, and aspirations. We
leaned into the challenge, encouraged each
other, and exchanged practical strategies
we could take back to our classrooms.

That experience opened my eyes to what
CPD could really offer — not only content
knowledge but also confidence, connection,
and purpose.

W Pathfinders and the power of
community
One of the most pivotal moments in
my CPD journey was attending the
Pathfinders Summer Institute (helloworld.
cc/pathfinders-summer-institute). At
the time, I still carried a bit of imposter
syndrome with me, wondering if I
truly belonged in rooms filled with
‘real’ computer science educators. But
Pathfinders flipped that narrative.

At Pathfinders, I participated in hands-on
workshops that weren’t just about syntax
or tools. They were about pedagogy, equity,
and how to design learning experiences
that ignite curiosity. I learnt how to scaffold
programming challenges, how to use
unplugged activities to build conceptual
understanding, and how to integrate
storytelling into coding lessons to make
abstract concepts more relatable and
concrete. More importantly, I met mentors
and peers who became part of my ongoing
support network.

I returned to my school not just with
lesson plans but with a new mindset: that I
could be both a learner and a leader in CS
education.

Finding my people
The professional growth didn’t stop there.
Attending the CSTA (Computer Science
Teachers Association; csteachers.org)

Annual Conference was a turning point.
The sessions were both informative and
empowering. I connected with educators
from all over the country, participated
in deep dives into Python, AI, and game
development, and walked away with a
renewed sense of purpose. At CSTA, I found
my people — teachers who understand the
challenges and joys of teaching code.

Then came Indiana CSPDWeek
2025, a professional development
experience unlike any other (helloworld.
cc/cspd-week-2025). It was there that I
participated in a session titled ‘Introduction
to Python programming’, which not only
reinforced my technical skills but also gave
me fresh insight into how to bring coding
to life for students aged 11 to 18. We
created lessons, collaborated on projects,
and even made commercials to pitch our
ideas to other educators. It was energising,
practical, and empowering, all at once.

Both of these experiences helped me
realise that I didn’t have to do this work
alone. There’s a whole community of
educators out there ready to share ideas,
provide support, and cheer each other on.

Fellowship as a catalyst
Being selected for a national CS
education fellowship was a game changer
(helloworld.cc/csta-impact-fellow). As a
CSTA IMPACT Fellow, I had the opportunity

BIT BY BITBIT BY BIT
How CPD upgraded my approach to programming instruction

n ��CPD opportunities helped
me to find my people

helloworld.cc 49

to engage in long-term professional
development, coach newer teachers,
and contribute to state and national
conversations around CS education. The
fellowship made me a better teacher as well
as an advocate.

Through the fellowship, I co-facilitated
workshops, helped review curriculum
materials, and even shared my story with
other educators who, like me, once felt
unsure about their place in this field. These
leadership opportunities pushed me out of my
comfort zone and helped me see the bigger
picture: teaching programming isn’t just about
loops and functions — it’s about preparing
students for a world shaped by technology.

From professional learning to
classroom practice
All of these experiences — bootcamps,
conferences, and fellowships — had a direct
impact on my classroom. Here’s how:

1. 	�Student-centred learning: CPD
taught me to move away from ‘sage
on the stage’ teaching. Instead of
lecturing, I now facilitate learning. My
students engage in pair programming,
collaborative projects, and debugging
challenges that build both technical and
soft skills.

2. �Iterative thinking: professional
development shifted my mindset from
perfection to progress. I encourage
students to see failure as feedback
and to iterate on their code like real
developers do. We celebrate productive
struggle in my classroom now.

3. 	�Tech integration with purpose:
before CPD, I often introduced tools
just because they were popular. Now,
I’m more intentional. If a tool doesn’t
deepen understanding or foster
creativity, I leave it out. Tools like
Tinkercad, Scratch, or Code.org are
integrated only when they serve clear
learning outcomes.

4. 	�Confidence as a STEM leader: most
importantly, CPD helped me believe
in myself. I’m no longer afraid to say
‘I don’t know’, and I model curiosity

alongside my students. I’ve become
the go-to person in my building for
STEM integration — not because I know
everything, but because I’m always
willing to learn.

Investing in my future
One of the greatest outcomes of these
experiences is that they inspired me to
take the next big step in my career: I am
currently pursuing my master’s in computer
science education. As I continue to learn
about pedagogy, curriculum development,
and the intersection of computer science
and equity, I find myself even more excited
about the future of teaching.

This formal learning is helping me refine
my instructional strategies, stay current
with trends in CS education, and engage
in action research that directly impacts
my students. It has also deepened my
commitment to building a more inclusive
and engaging programming classroom.

Supporting other teachers
The more I grew through CPD, the more I
felt called to support others. I began leading
CPD sessions for non-CS teachers who
were looking to integrate STEM into their
instruction. Many of them shared the same
feelings I once had — uncertainty, fear of
failure, or the belief that ‘I’m not a computer
person’. Because I’ve walked that path
myself, I can speak to them with empathy,
share practical entry points, and help
demystify programming concepts.

Teaching programming isn’t easy, but
it’s worth it. And continuous professional
development has been my bridge from
uncertainty to confidence. Every bootcamp,
every workshop, every late-night curriculum
tweak was a step towards becoming the
teacher my students deserve.

Now, when a colleague tells me, “I could
never teach that,” I smile and say, “I used to
think the same thing. Let me show you how
I got started.”

LEONTAE GRAY WARD
Leontae is a STEM and computer science
educator dedicated to expanding access for
underrepresented students. She is a Project
Lead The Way instructor for the School
City of Hammond district in Indiana, USA.
Leontae is pursuing her MEd in computer
science education at the University of
Maryland, Baltimore County.

n ��Co-facilitating workshops and
sharing is a great way to push you
out of your comfort zone

helloworld.cc50

Lauren Kisser discusses Amazon Future Engineer UK and how
educators can help their students prepare for the future

n an age of continuous technological advancement, the
landscape of future careers is constantly shifting. It is

vital that we show students that there are a diverse range of
tech careers and that we must all learn to work creatively with
emerging technologies. We caught up with Lauren Kisser to
discuss how Amazon is making tech careers more accessible and
understandable for young people, and how teachers can integrate
careers guidance into their lessons.

Tell us about your journey in technology and what drives your
passion for supporting young people in education.
My journey in tech has been an amazing and unexpected adventure.
I began with a passion to solve business problems using technology
and saw how tech can bring people together through compelling
experiences. This led me to my role at Prime Video. Every day, I work
with world-class engineers and technical product managers innovating
the entertainment experience on behalf of our global customers.

What really drives my passion for supporting young people is
seeing that moment of discovery when a student realises they could
have a future in tech. Every time I join conversations or see students
engaging with our career-exploration initiatives, I’m reminded of
how important early exposure to tech careers is. I didn’t have these
opportunities growing up, and I often think about how different my
journey might have been if I’d been able to virtually step inside a tech
company or chat with professionals already working in the field.

As a woman in tech leadership, what would you tell your
16-year-old self about pursuing a career in technology?

I I’d have quite the pep talk with her and tell her not to let anyone
define what she can or can’t do in tech. Back then, I had this narrow
view of what a technology career looked like — I thought it was all
about coding in a dark room somewhere. Now I know that couldn’t
be further from the truth.

What’s amazing about technology careers today is their
incredible diversity — every industry, from agriculture to zoology,
utilises technology to solve problems. In my current role, I work with
artists, storytellers, engineers, and innovators all using technology in
different ways. We’re passionate about giving real-world examples
of tech-forward careers to students through our programmes with
Amazon Future Engineer.

How are emerging technologies like AI and machine learning
changing the entertainment industry, and what does this mean
for future career opportunities?
They are revolutionising work in ways that would have seemed
like science fiction just a few years ago. But what really excites me
is how these technologies can create positive social impact. One
of my favourite examples is voice-activated technology, which is
transforming daily life for people who are blind or partially sighted.

We need young people who can think creatively about how to
use these technologies to solve real-world problems. We recently
carried out research with Gallup which showed that Amazon
hires talent in roles of what we call ‘careers of the future’ — high-
growth, automation-resistant jobs that will be crucial in the coming
decades (helloworld.cc/gallup-future). We’re talking about roles like
solutions architects, AI specialists, data scientists, and product and

A GLIMPSE INTO THE FUTURE

CAREERSCONVERSATION

©
 Su

pa
ch

ai/
sto

ck
.ad

ob
e.c

om

helloworld.cc 51

programme managers. Through our educational programmes, we’re
showing students that tech careers aren’t just about writing code —
they’re about building technology to make life better for people.

How can we make tech careers more accessible and
understandable for young people?
Some other research we completed with Gallup revealed that many
young people simply aren’t aware of the diverse range of careers
available in technology (helloworld.cc/afe-careers). You can’t aspire to
what you can’t see. That’s why we’ve created multiple entry points for
career exploration, meeting students wherever they are in their journey.

For example, through our Career Tours programme, students
can virtually experience different parts of the Amazon business,
from working in a fulfilment centre, to designing cloud computing
solutions, to delivering world-class video experiences (helloworld.
cc/afe-career-tours). Then we have our Class Chats programme
which offers bite-sized, scenario-based learning directly from
professionals (helloworld.cc/afe-class-chats), and our Future
Careers Experience for in-depth virtual work experience
(helloworld.cc/afe-career-experience).

Virtual experiences are vital in creating equitable access to career
exploration, particularly for students from underserved communities.
When physical visits aren’t possible due to location or resources,
technology brings these opportunities directly to students.

What advice would you give to teachers who want to help their
students explore careers in technology and innovation?
The path into tech isn’t one-size-fits-all anymore. Whether through
university, degree apprenticeships, or career changes later in life,
there are multiple routes to success. It’s powerful when students
realise there’s a path that could work for them — it opens up
possibilities they might not have considered before.

Representation is crucial in all careers, particularly technology
careers, to ensure we are building products that work for all
customers. When students see professionals who look like them,
who come from similar backgrounds, or who have followed non-
traditional paths, it helps challenge stereotypes about who belongs
in tech. In our virtual experiences and career programmes, we
deliberately showcase diverse role models across different roles and
levels. This representation helps students, particularly those from
underrepresented groups, envision themselves in these careers.

What’s also important is making these experiences relevant to
students’ lives and interests. When students see how technology
connects to things they care about — whether that’s entertainment,
sustainability, or solving community challenges — they’re
more likely to engage. The key is showing them that careers in
technology are about solving problems and creating solutions that
make a difference in people’s lives.

How can educators incorporate career guidance programmes
into their teaching?
Our programmes are designed to complement existing curriculum
and career guidance activities. Teachers can start with the short
Career Tours to introduce different aspects of technology, then use
the Class Chats for more focused exploration, and finally offer the
Future Careers Experience to students wanting to dive deeper.
All of these programmes are aligned with Gatsby Benchmarks
too [evidence-based benchmarks for career guidance for young
people, used in secondary schools and colleges across England;
gatsbybenchmarks.org.uk].

Beyond traditional pathways, we’re also deeply committed
to apprenticeships as a vital route into tech careers. In 2025,
Amazon announced 1,000 new apprenticeship roles across the
UK, demonstrating our continued investment in creating diverse
pathways into the technology sector. These opportunities range from
entry-level to degree apprenticeships, offering real-world experience
alongside formal training (amazonapprenticeships.co.uk).

It’s been a pleasure talking to you Lauren! Any final words?
I’m incredibly passionate about the work we’re doing with Amazon
Future Engineer! By providing free, accessible resources and
diverse virtual experiences, we’re working to ensure that every
student, regardless of their background, has the opportunity to
explore and pursue careers in technology. It’s about building a more
inclusive, innovative future — and I believe educators play a big
part in making that vision a reality. Check out our free resources at
amazonfutureengineer.co.uk.

LAUREN KISSER
Lauren fosters innovation in
entertainment as director of Prime
Video at Amazon. She champions
education as sponsor of Amazon
Future Engineer UK, Amazon’s
childhood-to-career programme
which removes barriers for
students from underserved
communities in computer science
and careers of the future.

HIGH-GROWTH,
AUTOMATION-RESISTANT
JOBS WILL BE CRUCIAL IN
THE COMING DECADES

“

helloworld.cc52

ne of the stickiest myths about
computer science is that it has

anything to do with computers. After all,
you can’t spell computer science without
‘computer’, right? That’s what I thought —
until I actually had to teach the subject.

After 15 years shipping code as a
professional software developer, I equated
progress with lines of code and productivity
with screen time. So I filled my first weeks
of lessons as a new teacher with IDE demos
and coding drills, all the while watching my
students’ eyes glaze over. Recursion, data
structures, and even simple loops turned into
abstract hurdles instead of usable concepts.

My nerds thrived, but the rest decided
that computers probably weren’t for them.
The breakthrough came the day I pulled the
power strips, handed out sticky notes, and
turned the class into a living neural network.
Watching thirty teenagers shout activations
across the room and then vote, revise, and
cheer at their final classifications taught me
that the quickest route to comprehension is
often through cardboard, sneakers, and a
hallway — not a glowing screen.

Why bodies beat bytes
Before we jump into how I implement
unplugged computing activities in the

classroom, let’s explore why physical learning
creates such powerful cognitive anchors.

When students use their bodies to model
computational concepts, they engage
multiple sensory systems at once, creating
richer neural connections than screen-
based learning alone. This concept is called
embodied cognition, which is the idea
that thought isn’t confined to the brain but
extends to our physical interactions with
the world. In other words, by physically
acting out abstract concepts, students’
comprehension and retention improve
dramatically.

The combination of movement, social
interaction, and tangible manipulatives
creates what cognitive scientists call
‘multimodal’ learning experiences. More
practically, though, physical tasks break
screen fatigue. By engaging students in the
real world, we give them an opportunity to
recharge their mental batteries, creating a
natural break that can revitalise focus and
renew engagement.

Three off-screen demos that work
By the end of my first year, I had run dozens
of unplugged activities, each of which
taught my students more deeply than my
rambling ever could. But three in particular

proved so versatile and impactful that they
have become staples in my teaching toolkit,
each addressing different computational
concepts while engaging students
physically and socially.

Living neural net
This unplugged activity transforms students
into the individual neurons of a neural
network, physically demonstrating how
machine learning systems classify data
through weight adjustments and activation
functions.

To execute it, have students arrange
themselves in layers (input, hidden, output),
passing sticky notes with ‘activation values’
between them according to simple rules.
For example, in our human neural net,
we could classify if a photograph is of a
sandwich or not.

Students form the input layer and receive
features from the ‘image’ (like bread type,
fillings, condiments). The hidden layer
neurons might apply weights to different
combinations (bread + meat might strongly
suggest ‘sandwich’ while bread + ice cream
would not). The output layer makes the final
determination based on the weighted inputs
it receives, determining the classification:
sandwich or not-sandwich.

FEATURE

O

NO SCREENS, NO PROBLEM
Rediscovering the power of physical thinking in a digital world

©
 Ra

wp
ixe

l.c
om

/st
oc

k.a
do

be
.co

m

helloworld.cc 53

tactile nature of sorting sticky notes and
physically moving through decision points
creates an intuitive understanding that
typing into a terminal simply cannot match.

DNS race
Whether you are teaching networking or not,
understanding the Domain Name System
(DNS) is a critical skill for students to navigate
our increasingly connected world, as it forms
the bedrock of web browsing, API calls,
and nearly every internet-based interaction.
This relay race brings the hierarchical lookup
process to life through physical movement.
To get started, all you need are notecards,
masking tape, a long hallway, and a very
forgiving school administrator.

In this activity, students become
components of the DNS hierarchy. I
designate specific students as root servers,
top-level domain servers (.com, .org, etc.),
and authoritative nameservers for popular
domains. The remaining students act
as clients, making DNS requests. When
a client needs to resolve a domain like

‘youtube.com’, they must physically run to
the correct sequence of servers, collecting
pieces of the IP address along the way. The
fastest to complete the DNS resolution and
return to their starting point (with the right
IP address) wins!

To make it even more realistic, you can
introduce network latency by requiring
students to hop on one foot when they reach
‘overloaded’ servers, and incorporate caching
by allowing students to shortcut the lookup
process after their first successful resolution.

What makes this exercise particularly
effective is how it physically demonstrates
the distributed nature of DNS. Students
quite literally experience the hierarchical
lookup process, understanding why DNS
resolution sometimes fails and how caching
might improve performance. Ultimately, this
gives them context that purely technical
explanations often fail to provide.

Unplugged by default
After a year of experimentation, I’ve come
to the conclusion that unplugged activities
shouldn’t be treated as a backup plan
for when the Wi-Fi goes down. They
should be deliberately integrated into the
curriculum as essential pedagogical tools.
Spending 30 minutes on any bodied activity
can save hours of debugging confusion
later, as students approach coding tasks
with stronger mental models of how
algorithms and other computing concepts
work. Thinking computationally has never
required a computer — even the earliest
algorithms were designed with clay tablets
and abacuses — and what our students
need isn’t more screen time, but a deeper
conceptual foundation that transcends any
particular technology.

For educators looking to incorporate
unplugged computing into their classrooms,
all you have to do is start small. Replace one
lecture with a comparable physical activity
and observe how comprehension changes.
After all, the most valuable gift we can give
our students isn’t mastery of any particular
programming language or framework, but
the ability to think computationally in any
context, screen-based or not.

After each classification attempt, they
adjust their ‘weights’ (written on their desks
or lanyards) until the network successfully
identifies patterns.

What makes this activity powerful is how
it demystifies the ‘black box’ of AI. Students
viscerally understand backpropagation by
physically walking backwards through the
network to adjust their values — something
that remains abstract when viewed only as
matrix maths on a screen.

Markov paper chain
Markov chains might sound like an arcane
statistical concept, but they’re the backbone
of everything from predictive text to route
planning (helloworld.cc/markov-llm). To
demonstrate how past states influence
future probabilities, I created a simple
exercise using nothing but library books.

The exercise begins with students pairing
up with a favourite text (a novel, poem, or
essay) to extract ‘states’ (words or phrases)
and ‘transitions’ (what follows those words).
Each pair creates a simple Markov model

by scanning through books, recording every
instance of keywords and noting what
follows each one (for example, if they’re
tracking the word ‘through’, they might find
it’s followed by ‘the’ 40 percent of the time,
‘a’ 30 percent, and ‘all’ 30 percent).

After their data collection, students
assemble these probability distributions
into a physical chain on the whiteboard
using different coloured sticky notes for the
‘states’ and arrows for ‘transitions’. The class
then collectively ‘walks’ the chains, making
random choices according to the recorded
probabilities at each junction, generating
sentences that (loosely) mimic the original
source material but with unique variations.

What’s remarkable is how quickly
students grasp concepts like randomisation,
probability distributions, and generative
processes through this hands-on exercise,
all without writing a single line of code. The

ZACHARY FLOWER
Zachary is a former software developer
turned high-school computer science
teacher. After 15 years in industry, he
now channels his industry experience into
engaging, hands-on projects that make
abstract computing concepts tangible
and career-relevant (linkedin.com/in/
zachflower).

UNPLUGGED ACTIVITIES CAN SAVE HOURS OF
DEBUGGING CONFUSION LATER, AS STUDENTS
DEVELOP STRONGER MENTAL MODELS

“

helloworld.cc54

How short-form video apps are reshaping student attention,
behaviour, and engagement in computing classrooms

t starts with a swipe. TikTok,
Instagram Reels, YouTube Shorts

— each is engineered to keep users
engaged for as long as possible. The
content is short, sharp, and algorithmically
targeted, offering an instant dopamine hit
with minimal cognitive effort.

It is addictive by design. The type
of content our learners consume is a
discussion for another article. This is not
about blaming TikTok and others; it is about
recognising the design patterns of the
platforms our students inhabit, and how
those patterns shape their expectations,
behaviour, and even their capacity for
problem-solving.

The fast information, swipe-to-ignore
culture, and low tolerance for anything not
‘for you’ have a clear classroom impact.
In computing, where students often work
in front of a screen, the conditioning is
obvious. They crave stimulation, respond
less patiently to failure, and expect instant

I feedback. Tasks requiring sustained
focus, like debugging code or designing
algorithms, can quickly lead to frustration
or disengagement.

Brains wired for dopamine
Social media platforms run on reward loops:
you scroll, the algorithm serves something
you will probably like, and you get a
dopamine hit. This loop is fast, constant,
and satisfying, which is why it is so difficult
to stop.

For adolescents, whose executive function
and impulse control are still developing, the
effect is amplified. When we ask students
to debug a five-line Python program, there
is none of the instant novelty they are
accustomed to. This is not laziness — it is
a mismatch between the reward systems
they know and the type of cognitive effort
we ask for. It also explains why some click
wildly between tabs, give up at the first
syntax error, or constantly seek reassurance.
They have been conditioned to scroll through
failure, not sit with it.

Reels vs. reality
In computing, patience is a core skill.
Whether writing an algorithm, planning a
solution, or evaluating work, success comes
through iteration and reflection. But if a
student’s digital life teaches them that every
three seconds something new will happen,
how do we help them slow down?

Rather than fight these instincts, I have

learnt to adapt. Short attention spans are
not a deficit, they are a clue. If students
are used to learning through fast, visual
content, I need to meet them partway.

For example, in one unit of work, students
dissect the algorithms behind the ‘For You
Page’ (FYP): how data is collected, how
recommendations are made, and what
trade-offs exist. It is a natural entry point into
algorithmic thinking, bias, and ethics. They
are hooked — not because it is TikTok, but
because they finally understand the hidden
systems behind the apps they use daily.

I have also introduced micro-challenges
— quick five-minute tasks with a clear
output, such as writing a snippet of
pseudocode, correcting an error, or
designing a logical process. These mimic
the quick-feedback nature of scrolling while
building stamina for longer projects. One
of my favourite moments came when a
Key Stage 3 (11- to 14-year-old) student
designed a flowchart simulating a TikTok-
style algorithm. He proudly explained how
his ‘watch time’ metric adjusted content
delivery based on interaction. For him,
computing suddenly became relevant and
creative, and the confidence boost carried
over into later coding tasks.

Scroll with purpose
We can also help students become more
critical of the media they consume. In Key
Stage 4 digital literacy (ages 14–16), I ask,
“What makes a video ‘scroll-stopping’?”

THE ‘REEL’ PROBLEM
IN CLASSROOMS

FEATURE

Use TikTok’s recommendation algorithm as a
starter task. How might it work? What data
does it use? Then ask students to design their
own ‘For You’ feed algorithm using flowcharts
or pseudocode. It is an engaging way to explore
algorithms, logic, and ethics in a context they
already understand.

TRY THIS

helloworld.cc 55

Students analyse structure, pacing, and
hooks, then plan their own video with a
message, from online safety to digital well-
being. Designing the content helps them
see behind the curtain.

I also adapt how students evidence
learning. Flip (itsflip.com) allows short verbal
reflections to videos or code explanations.
OneNote Class Notebook (onenote.com/
classnotebook) lets them collect screenshots
and annotate their learning journey. These
mirror their digital habits but turn them into
tools for metacognition.

There is also value in linking these skills
to career pathways. Analysing social media
algorithms naturally leads into discussions
on data science, UX design, and AI ethics,
showing students that their habits can be a
springboard to future opportunities. The aim
is not to ban the scroll, but to teach when to
scroll, why to stop, and how to think deeply
when it matters.

A culture shift
If we want computing to thrive, we need to
see digital behaviour as part of our teaching
landscape. I have had more success
when I understand students’ online world,
speak their language, and show interest
in their tech habits. I have even dabbled in
Reels and TikTok’s FYP myself. It felt like
a scientific experiment, because I did not
enjoy it. I noticed shifts in mood and energy,
which helped me empathise with students
who live in these loops daily. The difference
is, I could choose to delete the apps; they
often cannot, or will not.

This perspective supports behaviour
management too. A disengaged student is
not always disruptive; they might simply be
struggling with delayed gratification. A
calm, structured environment with
achievable steps and visible success can
help reframe their expectations. We are, in
many ways, unteaching the ‘instant win’

n � �Young people are growing up
in a swipe-to-ignore culture

©
 Xa

vie
r L

ore
nzo

/st
oc

k.a
do

be
.co

m
ROSS BARRETT
Ross is director of IT at Chantry Academy
(the Active Learning Trust) in Ipswich,
England. He is passionate about digital
literacy, curriculum design, and tackling the
challenges of tech-native learners.

THE AIM IS NOT TO BAN THE SCROLL, BUT TO
TEACH WHEN TO SCROLL, WHY TO STOP, AND
HOW TO THINK DEEPLY WHEN IT MATTERS

“

mentality. But we can do it creatively, by
weaving computing principles into their
world rather than dragging them out of it. If
we meet students where they are, scrolling
thumbs and all, we can help them see that
the systems they use daily are not just
entertainment, but gateways into deeper
understanding and future careers.

helloworld.cc56

Two teachers tell us about how they use our text-based coding environment
designed for young learners

echnology in education can be overwhelming, for both
teachers and students. With so many tools available, it’s

hard to know what fits the classroom. A platform that works in
a professional or informal setting isn’t necessarily going to be
suitable in an educational one. That’s why we built the Code Editor
for Education (helloworld.cc/code-editor-for-ed) in response to
the lack of suitable classroom tools for teaching text-based coding.

Currently in beta, our platform is being actively shaped by real
teacher feedback and aligned with emerging technologies to ensure
it meets the evolving needs of today’s classrooms. All features, both
current and in the pipeline, are developed with teachers’ needs front
and centre. It's accessed in your web browser, and getting started is
easy. Add an unlimited number of teachers, students, and projects
to your verified school account, all for free, forever.

Jeremy Hieb
Integrated maths teacher

Hi Jeremy. Can you tell us a little about yourself?
I teach sixth- and eighth-grade students (11- to 14-year-olds) at a
suburban public school north of the Twin Cities Metro in Minnesota,
USA. My focus for sixth-graders is digital manufacturing, including 3D
printing and laser cutting. For eighth-graders, I primarily teach coding.

What is the primary goal of your eighth-grade coding class?
Students usually arrive with some block-based coding experience
from activities earlier on in school. The main objective for my eighth-
grade class, set by the school, is to transition them from block-based
to text-based coding systems. I chose Python for this transition about
eight years ago, and I've been fortunate because of the abundance of
resources and its continued relevance.

T How did you personally learn Python to teach these classes?
My learning journey involved a lot of self-study, primarily through
the Raspberry Pi Foundation's learning section and by reading
multiple basic Python books. My first year of teaching was a steep
learning curve with a lot of late nights, as I was still solidifying my
own understanding of the curriculum.

What are some common misconceptions about coding you
encounter with students?
That coding is only for smart kids. A big part of my job is to convince
students that they are capable of coding and can succeed.

What challenges have you faced with integrated development
environments (IDEs) for classroom use?
We've been actively searching for a suitable coding platform.
We previously used Replit, but it became problematic when they
introduced AI features that auto-completed student code. They
eventually removed their educational programme, so we had to
find alternatives. My hope is that Code Editor will be a reliable,
consistent, and fast browser-based IDE that students can use
both at school and at home on their Chromebooks.

What feedback do you have on Code Editor, and what features
do you find beneficial or lacking?
Code Editor is beneficial because it allows for well-organised
programs that students can modify, which saves time and lets us
focus on specific skills. However, as the product continues to be
developed, there are areas I’d suggest for improvement, such as
adding simultaneous coding, which I find valuable for collaborative
group assignments and fostering social interaction among students.

What is your biggest hope for your students?
My biggest hope is that my students become effective problem-
solvers. I view programming as a powerful tool to develop critical
thinking and creativity, and I want them to embrace that.

What advice would you give to teachers who are hesitant to
start teaching computer science?
My advice is: don't be afraid to fail. Teaching, especially in a
rapidly evolving field like computer science, is an iterative process.
It's important to admit when something isn't working and to
continuously modify your approaches until they are effective for
most students.

CODE EDITOR FOR EDUCATION

IN MY CLASSROOMCONVERSATION

JEREMY HIEB
Jeremy's love for teaching
began when he taught in a rural
village school in Tanzania. Since
earning his master's in teaching
mathematics, he's been teaching
integrated maths in middle
school in Saint Paul, Minnesota,
USA.

helloworld.cc 57

Tom Mason
Head of mathematics and ICT

Hi Tom. Tell us a little about yourself.
I'm a teacher in Croydon, southeast London, in England. I've been head
of maths for a couple of years and am now also head of computing.

Did you have a background in computer science before you
started teaching it?
I was a maths teacher, but during my undergraduate degree I did
some computing modules and a little bit of robotics, so I’ve always
been interested in computing. About four years ago, the school asked
if I’d like to teach IT and computer science, and I said yes. I’ve been
teaching A-level (16- to 18-year-olds) and GCSE computer science
(15- to 16-year-olds) since then.

What is your classroom like?
It’s an average-sized, all-boys Catholic school in a lower socioeconomic
area. We don't have a big budget, and many students have limited
access to computers at home, so some do their coding on their phones.
It's crucial for us to teach computing well in school so they don't miss out.

How did you first learn about the Code Editor?
I was looking for an in-browser IDE because we can't install Python
natively on school computers for safety reasons. I tried Trinket and
Replit, but then I found the Raspberry Pi Foundation’s Code Editor
through a Google search. The fact that I could create classes and
projects, and that it was free (unlike Replit, which started charging),
ticked all the boxes.

What were your first impressions of Code Editor?
I started using it just before Christmas. It was a little clunky to set
up at first, as I had to add students one by one (now you can import
from a spreadsheet). But as soon as students started using it, it was
brilliant. I can send projects to all students at once, and they each
have their own editable version, similar to Google Docs. The addition
of markdown, which allows me to embed lessons and instructions,
was a huge improvement. It also supports HTML and CSS, which I’ve
used for my A-level classes.

Can you share an example of a particularly successful lesson?
My Year 10 class, who are now going into Year 11, created a
ten-question quiz about Python. I gave them minimal direction,
encouraging them to think outside the box, randomise questions, and
even hide answers in separate files. They came up with incredibly
clever and creative solutions, and it was clear they were genuinely
understanding the code. This open-ended, project-based learning
worked really well because they couldn’t just google the answer; they
had to explore and problem-solve.

Why should other educators try Code Editor?
It’s a very simple tool that does almost everything a teacher needs

TOM MASON
Tom is head of mathematics
and head of ICT at an all-boys
secondary school in southeast
London. He is passionate about
teaching and learning, and has a
keen interest in digital education
practices.

right now, and new features are constantly being added. Most
importantly, it doesn't have AI auto-completion that inhibits students’
learning. It’s easy to set up, works really well, and I can see all my
students’ work live. I think it’s brilliant.

What is your hope for the students you’re teaching to code today?
I’d love for them to be developing code for others, whether in industry
or at university, and to be changing the world. I want them to be
using fresh, new technologies and coming up with innovative ways
to use AI that I could never imagine.

What do you find is the biggest challenge in teaching computer
science right now, especially with the rise of AI?
The biggest challenge is students cheating by using AI to write code.
While AI is used by professional developers, I want my students to
learn to code themselves. It’s a catch-22. I try to encourage them to
use their brains first, and if they’re stuck, to ask specific questions
of AI tools such as, ‘How do I swap two entries in a list?’ rather than
‘Tell me how to do bubble sort in Python code.’ This helps them
understand the code, instead of just copying and pasting.

What advice would you give to a teacher hesitant to start
teaching computer science?
The technology is really cool! It’s fun to tinker with things. Look at some
code, try to break it, and figure out why it can’t do certain things. Push
the code to its limits. This will help you understand how it works.

Thank you, Jeremy and Tom. If you'd like to try Code Editor for
Education, visit helloworld.cc/code-editor-for-ed.

n Code Editor for Education has classroom features for educators

helloworld.cc58

FEATURE

Ryan Etheridge shares how his family uses AI as a tool for coding, problem-solving,
and meaningful projects in rural North Carolina in the United States

m a dad of three boys growing
up in a one-stoplight town in the

foothills of western North Carolina, USA.
Out here, there’s no shortage of fresh air
or room to run, but finding activities that
excite a kid’s mind can take some work!
What we do have are front porches, long
car rides, and plenty of evenings around
the coffee table. That’s where my three
boys (ages 13, 11, and 8) and I have found
space to build a practice of coding and,
more recently, artificial intelligence.

At first, I worried. Would AI wipe away
all the hard work we’d put into learning
the basics of coding? Would loops and
logic go the way of the rotary phone? But I
came to see something different: AI wasn’t
a replacement for thinking, it was a tool
that could help my boys think bigger, ask
sharper questions, and create with more
imagination than before.

Goals with a purpose
We start every summer by setting goals,
not just for chores or sports, but for coding.
This year, we used an AI tool to set weekly

I’ construction and coding goals to be used
with a LEGO® Spike™ kit the kids got as a
Christmas gift from grandparents last year.
The boys shared their interests — outdoor
pursuits, soccer, board games, Nintendo
Switch, Beyblade X, and reading — which
the tool turned into eight weekly lessons like
‘Robo-Goalie Showdown: Build and code
a robotic goalie that can block a ball using
sensors and timed reactions.’ They ended
up focusing completely on shooting and
made the robot shoot the ball at varying
strengths based on how hard the force
sensor was pressed. It was awesome!

We began to incorporate AI into other
domains of summer decision-making. In
early May, I realised we had a free week and
needed to plan a vacation. Sitting together,
I told the boys: First, let’s define the goal:

Will you help me plan a summer vacation
for my family? Then I added the role: I want
you to serve as my trip planner and travel
agent. Finally, I invited my kids back into the
conversation: Ask us questions to shape the
trip in a way that aligns with our interests
and means.

That three-step rhythm — goal, role,
clarifier — is the simplified version of the
prompt-engineering training I lead with
the staff at my school. For kids, introducing
AI isn’t about typing fancy commands but
about thinking clearly, defining purpose,
and setting boundaries. The follow-up
questions from the AI tool helped the boys
see how constraints (like budget or time)
could actually improve results. I had a good
time making up counterexamples on the fly
to show what would’ve happened if we said

Try our family’s three-step method on your next
car ride or long walk:
1.	 Define the goal.
2.	 Assign a role to the AI tool.
3.	� Add a clarifier to keep the human

conversation going.
This works for coding, trip planning, or any project
where kids need both structure and creativity.

PROMPTING
MADE SIMPLE

RAISING CODERS
IN THE AGE OF AI

n ��The weather exhibit at the North Carolina
Museum of Natural Sciences appeals to
the boys’ love of science and nature

helloworld.cc 59

we loved lazy rivers instead of rollercoasters.
At that moment, coding wasn’t a

worksheet or tutorial. It was real. It mattered
to them. And it set the tone for a summer
where AI wasn’t a machine doing the
thinking for us, but a neighbour lending a
hand while we steered the work.

Car conversations
Our best AI conversations don’t happen at
a desk. They happen in the car. Something
about the rhythm of the road gets my
boys asking questions: Could AI design
an album cover for our band, The Meaty
Ogres (a play on ‘mediocre’ because
I’m such a terrible singer)? Could it help
generate scavenger hunt clues for a

friend’s birthday? When my wife drives, I
type their questions in while we discuss
the goal, the role, and the clarifiers. Then
we read the answers out loud and argue,
laugh, or poke holes in what the AI says.

These rolling conversations have become
a family classroom. They teach the boys
that AI isn’t always right. Sometimes it gets
the details wrong, or gives answers that
just don’t fit. That opens the door to critical
thinking: How do you know if something’s
true? What sources matter? How can you
test it yourself? In the full AI training for
my staff, the final guiding point is ‘Keep
the human in the loop.’ It’s the same lesson
I want for my sons. The real joy of the
work comes from staying engaged, asking
questions, spotting errors, and shaping the
outcome ourselves.

Living rurally, with fewer formal
programmes, we’ve learnt that the family
minivan can double as a lab. It’s where
prompt engineering turns into road-trip
laughter and where critical thinking is
woven into long miles.

Coding meets life
I’ve always told my sons: you don’t learn
skills in isolation. You learn them when
there’s something meaningful at stake.

RYAN ETHERIDGE
Ryan is an elementary school principal
in rural North Carolina, USA. He explores
mathematics, coding, and AI with his three
sons, blending hands-on learning with semi-
structured play.

So when we wanted to build a movement
tracker, we didn’t just ask, “How do we code
it?” Instead, we asked, “How do we make it
fun enough that we’ll actually use it?”

AI has become a companion in
these projects. It helps generate ideas,
troubleshoot problems, and sometimes
explain maths concepts in new ways.
When my middle son wrestled with
algebra, we used AI tools to visualise
equations and explain the concepts using
practical, hands-on examples. When my
youngest worried that AI might kill off
polar bears because of its energy use, we
turned that concern into an opportunity to
research sustainable computing practices
and talk about climate responsibility.

The beauty of it is that AI always bends
back towards the human work of deciding
what matters. My boys are learning that
coding isn’t about writing perfect lines
or arranging the blocks the right way but
about solving problems that touch their
lives and their values.

Neighbours, not replacements
In our little community, we know the value
of good neighbours. AI, to me, is like a
neighbour willing to lend a tool, a helping
hand, or a cup of sugar. But you still need
to know what you’re building. That’s the
lesson I want my kids to carry with them:
AI is powerful, but only when you set the
purpose, define the role, and stay in the
driver’s seat.

For rural families like ours, coding with
an AI helper opens doors that otherwise
might stay shut. It connects kids to global
communities, gives them a playground for
ideas, and prepares them for a world where
technology touches every field. But at its
heart, it’s still about raising kids who can
think, dream, and create with their own
hands and minds.

That’s why I believe programming in the
age of AI is more important than ever — not
because AI will do the work for us, but

because it challenges us to become better
question-askers, sharper thinkers, and more
purposeful makers. Out here in our one-
stoplight town, that feels like a future worth
building.

AI IS LIKE A NEIGHBOUR LENDING A TOOL, BUT
YOU NEED TO KNOW WHAT YOU’RE BUILDING“

n �The three boys love heading into the city to visit museums — whether we’re
at home, in the car, or enjoying an illusion exhibit in Charlotte, the Etheridge
boys have opportunities to think, dream, and create

helloworld.cc60

FEATURE

Using semantic waves to help scaffold problem-based
learning in computer science education

roblem-based learning (PBL) is
a popular approach in computer

science education. Its appeal lies in
the belief that students learn coding
best by tackling real-world problems.
The hope is that through authentic
engagement, learners will naturally
acquire computational thinking skills.
In practice, however, this approach
demands far more of teachers than is
often acknowledged. Without careful
scaffolding, the gap between students’
everyday understanding and the abstract
thinking that is required in computing
can be overwhelming.

The unique challenge of computer
science
Teaching any subject involves navigating
abstraction, whether it’s glaciation in
geography, nationalism in history, or irony
in English. Teachers rely on metaphors,
examples, and lived experience to connect

P ideas to students’ existing knowledge.
In turn, students are expected to do
the reverse: to take personal, concrete
experiences and generalise them into more
abstract, academic language.

This movement between the concrete
and the abstract is called a semantic
wave, a concept from educational research
that describes how meaning is built and
transferred through shifts in context and
complexity. Effective teaching depends on
helping students move fluidly along this
wave. But in computer science, the wave
is steeper.

The subject combines abstract theoretical
concepts with practical implementation.
Students must understand code structures
like ′for′ loops or global variables, but must
also learn to apply logic and reasoning to
problems drawn from everyday life. Making
this leap, particularly from a real-world issue
to a digital solution, is often where students
struggle most.

More than just learning to code
Computer science education often assumes
that if students understand the syntax of
a programming language, they can solve
problems. But writing code is only part of
the journey. Real learning happens when
students use computational tools to model
and solve real problems.

For example, students may be asked to
code a micro:bit to trigger an alarm when
it detects motion. With enough guidance,
they’ll succeed. However, if the task is
more open-ended, say creating a device to
address an environmental issue, they often
get stuck, not because they can’t code, but
because they don’t know where to begin.

A real-life example
In a recent grade eight (ages 13–14)
project, my students were asked to design a
prototype to solve a pressing environmental
challenge. One student chose forest fires.
Her idea was to use a micro:bit chip to

BRIDGING THE GAP

n �Students building their ‘litter bot’ — a robot designed to move
around a canteen so that students can place their litter inside

helloworld.cc 61

detect a fire and send a signal to alert
authorities. This was a great start, but she
was soon stuck. She couldn’t understand
how a micro:bit could detect a fire.

I tried to help her break it down. Fires
produce heat and light. Sensors can detect
both. To simplify, we dropped smoke
detection and focused on heat and light
levels. Even then, she struggled. The
real problem was not the coding, it was
thinking through how to define ‘fire’ in
logical, programmable terms. This formed
her initial challenge.

I talked her through a possible approach:
if both light and temperature exceed a
certain threshold, an alarm is triggered. To
my mind this seemed a really simple step.
It’s simple in theory, but if you think about
it, it requires multiple conceptual steps:
defining the problem, abstracting it into
measurable variables, understanding the
sensor inputs, and writing the code.

In these struggles, she was not alone.
Students working on projects like detecting
floods, tracking animals in the wild, or
automating recycling bins all encountered
similar roadblocks. The challenge was not
really the coding itself. It was translating a
concrete issue into a generalisable model
that could be implemented with hardware
and code.

Two layers of complexity
This experience made it clear to me that
students face two distinct challenges. First,
they must frame the problem. This involves
starting from a familiar context, describing it
in everyday language, and narrowing it into
an abstract, generalisable form.

Then, they must design and implement a
solution; moving from the abstract back to
the concrete, writing an algorithm, coding it,
testing it, and debugging it.

DORIAN LOVE
Dorian teaches ICT, coding, and robotics
at Roedean School in Johannesburg,
South Africa. He is researching computer
education, including looking at how grade
eight and nine students (13- to 15-year-
olds) tackle physical computing projects
using micro:bits.

These steps describe two distinct
movements up and down the semantic
plane (Figure 1). Both steps require
different cognitive skills and different kinds
of support. Without explicit scaffolding,
students can quickly lose confidence.

When hands-on learning gets too
abstract
PBL and physical computing are meant to
make learning more accessible. By involving
sensors, motors, and microcontrollers,
these methods are supposed to connect
theory and practice. Ironically, they often
introduce even more layers of abstraction.
Now, students must also understand how
hardware works and how input from the
real world translates into digital logic.

What looks like a smooth path, from
real-world problem to coded solution,
requires multiple cognitive leaps in reality.
Students must understand the issue,
model it scientifically, grasp how sensors
and devices operate, apply programming
structures, and integrate all of this into one
functioning system.

The role of the teacher
Teaching computer science is not just about
teaching programming. It is about teaching

students to view the world through a
computational lens. They must learn to break
down complex issues into logical steps, build
models, and design solutions that can be
implemented in code. This requires teachers
to scaffold not just the technical skills, but the
thinking that comes before the code.

Reflecting on my own teaching, I now
recognise that the biggest support students
need is in framing the problem. Once the
problem is well defined, the code often
follows more easily. Helping students move
from observation to abstraction, and from
abstraction to application, is the real heart
of effective computing education.

MAKING THE LEAP FROM A REAL-WORLD
ISSUE TO A DIGITAL SOLUTION IS OFTEN
WHERE STUDENTS STRUGGLE THE MOST

“
n �Figure 1 The semantic wave up and down the plane

for framing the problem and coding the solution

helloworld.cc62

Sethi De Clercq shares his tips and activity ideas to introduce the
PRIMM approach to young digital explorers

n the world of adventure, no one
would hand an explorer a map

with a completed path to X-marks-the-
spot and say, ‘Congratulations, you’ve
arrived at your destination!’ The thrill, the
learning, and the real achievement lie in
the journey itself: planning and plotting
the course, taking the first steps, reading
the landscape, and navigating the pitfalls.
Reaching the final destination is simply the
evidence of the adventure.

Yet in our earliest computing lessons,
we sometimes risk doing the equivalent
of handing over the completed map. We
show a sequence, the robot arrives, and we
celebrate. But what about the adventure
of getting there? This is where the PRIMM
(Predict–Run–Investigate–Modify–Make)
framework comes in (helloworld.cc/
PRIMM). To some, PRIMM is seen as the

I domain of secondary-school classrooms
grappling with text-based code and complex
syntax. But PRIMM is not just for older
programmers; it is a fundamental pedagogy
for exploring code, perfectly suited to the
play-based, discovery-led world of early
years foundation stage (EYFS; ages 2–4) and
Key Stage 1 (ages 5–7).

Introducing PRIMM
PRIMM provides a five-stage structure
for planning programming lessons and
activities, which builds understanding
layer by layer. It’s not about finding
the right path immediately; it’s about
understanding the terrain. As a teacher
of young and very young learners, this is
what the PRIMM stages generally look like
for my digital explorers:

Predict (or ‘plotting the course’): this is

the ‘What do you think will happen?’ stage.
Before anything moves, before a single
block or button is clicked, the child looks at
the instructions and makes a hypothesis.
It’s a low-stakes entry point that values
thought over immediate action, and in this
fast-paced world full of flashing lights and
sounds, it is a very welcome step.

Run (or ‘taking the first step’): the child
presses ‘Go’, literally or metaphorically!
They run the code, follow the instructions,
or watch the sequence play out. This is
the moment of truth when their prediction
is tested against reality, and represents a
moment of instant feedback. Cue lots of
animated reactions!

Investigate (or ‘reading the
landscape’): here lies the heart of PRIMM.
This is the ‘Why did that happen?’ stage.
The child looks closely at each individual
instruction or block of code, perhaps
discovering that ‘That arrow made the
robot turn’ or ‘That green block made the
character jump.’ This is a slow, deliberate
dissection of cause and effect, where the
logic of the system is uncovered one step
at a time. This step-by-step investigation
of the sequence is a powerful learning
opportunity for younger learners.

Modify (or ‘choosing a new path’): now
we get to the tinkering, ‘What if’ stage —
‘What if I change this number?’ or ‘What
if I use a different block here?’ Children
experiment by making small changes to
the existing code or sequence and then

EMBRACING THE THRILL
OF THE JOURNEY IN CODING

FEATURE

n �OctoStudio code for the Predict and Run
stages of the ‘Lava chicken’ project

helloworld.cc 63

running through a mini Predict/Run cycle
to see what effect their change had. This
is where resilience and a no-fear-of-failure
mindset are born, helping younger learners
to develop a much deeper understanding of
the changes they make.

Make (or ‘drawing your own map’):
equipped with a complete or partial
understanding of how the individual steps
work, the child is now ready for their own
adventure. They are challenged to create
a new sequence or program from scratch
to solve a new problem. The learner is
no longer just a map reader; they are a
cartographer.

PRIMM in the EYFS
In early years, PRIMM is all about
sequencing, pattern, and logic in the
physical world. It’s hands-on, tangible,
and predominantly screen-free. Here is an
example of PRIMM in practice from my EYFS
classroom, where learners work towards
creating an algorithm for making a bug
hotel in nature. For this activity, teachers
need a selection of natural materials (hollow
sticks, pine cones, small logs, stones,
bamboo canes, etc.) and a premade frame or
designated area for a bug hotel.

Predict: the teacher lays out a jumbled
collection of materials, or demonstrates
placing them on top of one another without
considering a structure. They ask questions
such as, ‘What do you think would happen
if we just piled all these things up like this?

Would the bugs have good homes?’ A child
might predict, ‘The sticks would just fall out!’
or ‘The small bugs wouldn’t have anywhere
to hide if it all collapses.’

Run: children attempt to build a section
of the bug hotel following the jumbled
placement, demonstrating the instability or
inefficiency of the initial arrangement.

Investigate: the teacher guides the
learners, prompting them to ask questions
such as, ‘Why did that fall over?’, ‘Which
materials are best for the bottom?’, ‘Where
would the earwigs or isopods like to live

best?’, and ‘What kind of material would
make them happy?’ Through tinkering, the
children identify that larger, sturdier items
are needed for the base, and different
bugs prefer different types of shelter.
They are investigating the structural
dependencies, and may even have some
ecological considerations.

Modify: the learners now rearrange
and re-select materials, discussing how to
create stable sections and varied habitats
within the hotel. They might decide to
use thicker logs for the base, then hollow
bamboo canes, and finally straw and leaves
for smaller crevices. They run it again by

building a new, more stable section.
Make: learners are then faced with a new

challenge: ‘Can you make a new bug hotel
design using different materials? What order
would you put them in so it’s strong and
offers homes for different creatures?’

The pros of this approach are that it helps
develop logical reasoning, sequencing skills,
problem-solving, and, for this example, an
understanding of natural structures and
habitats. It makes abstract computational
thinking concepts concrete and relatable
through an engaging, nature-based activity.

However, it also has its cons. Following
these stages can be time-intensive, and
requires the teacher to guide the Investigate
stage with careful questioning about both
the engineering and ecological aspects.

PRIMM in Key Stage 1
By Key Stage 1, children are often using
tools like Bee-Bots, programmable toys,
or simple block-based apps like ScratchJr
or OctoStudio. PRIMM provides the
perfect structure for these initial coding
experiences. In this example, learners
program a chicken sprite to fall into a pit of
lava in OctoStudio.

REACHING THE FINAL DESTINATION IS SIMPLY
EVIDENCE OF THE COMPUTING ADVENTURE“

n Plotting our course to a campsite on a map

helloworld.cc64

numbers or movement blocks need to be
different? Should it turn more, or less?’
Children suggest and make changes, such
as changing ‘3’ to ‘5’ for move, or adding
a move down block. They then run the
modified code.

Make: now, teachers can set learners off
to create a new program, such as making
the chicken walk directly into the lava and
making a sizzle sound when it touches it.

The pros of this approach are that
OctoStudio’s visual, tap-based interface
is intuitive for this age group. The PRIMM
framework naturally differentiates,
allowing all children to participate in the
Predict and Run stages, while challenging
others with more complex Modify and
Make tasks. It also introduces foundational
programming concepts like sequencing,
parameters, debugging, events, and
sounds through motivating and playful
interaction.

However, the approach can feel slow
for children (and educators!) keen to jump

FEATURE

SETHI DE CLERCQ
Sethi is head of Key Stage 1 and the
computing lead at Rugby School Thailand.
Passionate about meaningful technology
integration across all age groups, he shares
training and tutorials on his YouTube channel,
and writes on sethideclercq.com and
readysetcompute.com.

straight to the Make stage, requiring
emphasis on the value of the Investigate and
Modify process. This is a tricky one, as even
teachers get very eager to jump in and add a
ton of features, animations, and effects!

Reflections
Embracing PRIMM in the early years and at
Key Stage 1 is a conscious decision to value
process over product. It requires us to resist
our instinct to praise only the successful
final outcome and instead celebrate
the insightful prediction, the careful
investigation, and the brave modification.
Yes, I do like a good adjective.

The beauty of PRIMM is that it builds
resilient, curious, and logical thinkers
from the very beginning. When a child’s
prediction is wrong, it is not a failure; it is
the start of a fantastic investigation. When
their modification doesn’t work, it is not a
mistake; it is a new clue they get to explore.

We are not just teaching children to
follow instructions or copy code. With
PRIMM, we are equipping them to be
fearless digital explorers, ready to chart
their own course, understand the terrain,
and embark on a coding adventure with
confidence. Let’s not just hand them the
completed map; let’s teach them the joy of
the expedition.

Predict: the teacher shows a simple,
prebuilt program: when I tap start block ->
move 3 motion block -> turn 90° clockwise
motion block. They ask learners, ‘What
do you think the chicken will do when it is
tapped? Will it reach the lava pit?’ Children
might predict, ‘It will move right, then turn,
but it won’t go in the lava.’

Run: tap the chicken sprite and children
watch it move and turn according to the
code. Learners observe its path and where
it ends up relative to the lava.

Investigate: the teacher asks, ‘Why
didn’t the chicken land in the lava? What
does the move 3 block do exactly? What
happens if we change the block to move
1? And what about the turn 90° clockwise
block?’ Children experiment by isolating
individual blocks or short sequences,
understanding their precise effect on the
chicken’s movement and orientation.

Modify: teachers now ask questions
such as, ‘How can the code be changed so
the chicken does go into the lava? Which

PRIMM BUILDS RESILIENT, CURIOUS, AND
LOGICAL THINKERS FROM THE BEGINNING“

n �Unplugged PRIMM in action (the Modify
stage of a Lego figure algorithm)

Hear the voices behind the stories as we continue
the conversations on our podcast:
� Listen on your favourite podcast app (search ‘Hello World Podcast’)
� Or watch them on YouTube

NEW PODCAST
SERIES

WATCH THEM ON YOUTUBE AND SPOTIFY:

Teacher tips on how to teach programming

helloworld.cc/pod28-tips

Which programming language should

you choose to teach coding? — educators

discuss the pros and cons of using Scratch,

Python, Java, and other programming

languages to teach coding skills at different

learning stages helloworld.cc/pod28-code

“Vibe coding” in programming education? —

a research deep dive into “vibe coding” and

whether it has a role in programming education

helloworld.cc/pod28-ai

For full episodes and to
subscribe, visit our website
helloworld.cc/pod

helloworld.cc66

Understand that computers need to be given precise
instructions in order to execute them

SEQUENCING

11–12 years

AGE RANGE

The Computing Curriculum is
the Raspberry Pi Foundation’s
bank of free lesson plans and
other resources that offer
educators everything they need
to teach learners aged 5 to 16.
It covers the full breadth of
computing, including computing
systems, programming, creating
media, data and information,
and societal impacts of digital
technology.
Every unit of work contains a
unit overview; a learning graph
to show the progression of
skills and concepts in a unit;
and lesson content, including a
lesson plan, slides, and formative
assessment opportunities. Find
them when you sign up for a free
account at helloworld.cc/tcc.

ABOUT THE
COMPUTING
CURRICULUM

LESSON PLAN

The following lesson
plan is taken from the

‘Programming essentials in
Scratch: part I’ unit from The
Computing Curriculum (TCC),
written by the Raspberry Pi
Foundation. It is aimed at
learners aged 11 to 12, to help
them understand the precise
nature of the instructions that
computers need to execute.

his is the first lesson in The Computing
Curriculum’s unit ‘Programming essentials in

Scratch: part I’. Learners will be taught the song
Frère Jacques before working in pairs to place blocks
of code into the appropriate subroutines so that their
program will play the song correctly.

T

STARTER ACTIVITY:
ROBOTS VS. HUMANS
5 MINUTES

Ask learners, ‘Can a computer do the job of
a musician?’ Give them a minute to write a
short answer justifying their opinion, then ask
them to share it with the person next to them.

Briefly discuss their answers together as a
class. Try and steer the conversation towards
discussion of the fact that musicians mostly
follow sheet music; while a computer could
be programmed to do this, ask whether it
could add the style, flair, and creativity of a
human musician.

OBJECTIVES
 �Compare how humans and
computers understand
instructions

 �Define a sequence as
instructions performed in
order, with each executed
in turn

 �Predict the outcome of a
simple sequence

 �Modify a sequence

REQUIREMENTS
 �Access to Scratch 3 either via the
web (scratch.mit.edu), or offline
(scratch.mit.edu/download).
Check that your school filters do
not block any part of this website.

 �Frère Jacques: version to
give learners (the-cc.io/
Y7sequencing1).

 �Frère Jacques: completed solution

(the-cc.io/Y7sequencing1-
complete).

 �Frère Jacques: completed explorer
task (the-cc.io/Y7sequencing1-
complete_explorer).

 �You may want learners to have
headphones or to be able to control
the sound from the speakers, if
their devices have them.

helloworld.cc 67

ACTIVITY 1: HOW COMPUTERS NEED
PRECISE INSTRUCTIONS 10 MINUTES

Ask for a volunteer from the class. They will play
the role of a human-style robot. The rest of the
class will take it in turns to play the role of the
computer programmer, who is going to give
instructions for the robot to follow.

Either draw on the board behind the robot so
that they can’t see, or give the instructions to the
class without the robot hearing, and ask learners
to give instructions to the robot, one at a time, for
it to carry out the following scenario:

1. Complete a full circuit of the class (depending
on the layout of your classroom, you might want
to be a little more descriptive to help the learners
who are giving the instructions, e.g. tell them
where the robot needs to go).

After the robot has carried out the
instructions, ask the class to analyse what
happened. The following scenarios might have
taken place:

n	� The learner might have followed the
instructions like a human rather than a
robot, and made up detail that wasn’t in the
instructions (for example, they knew which
direction to turn and how many degrees).

n	� The learner could have followed the
commands to the letter and deliberately
walked into objects.

n	� The learners giving the instructions might
have given very precise commands which the
robot followed accurately.

Allow the learners to reflect on what happened
and what instructions were given to the robot.
Discuss with the class the need for precise
instructions (for example, the need for more than
just ‘turn right’, adding how far to turn right if
needed, i.e. the angle of the turn).

At this point, you might want to give another
learner in the class the chance to have a go at
being the robot.

2. This time, the computer can use only the
following commands:

n	� Forward (number of footsteps)
n	� Right (degrees)
n	� Left (degrees)

Ask the learners to only use these commands
in their instructions to move the robot around the
classroom. As part of the route you give, make it
a secret requirement that they have to go outside
the classroom. Make sure the door is shut.

n	� Ask the class to again reflect on what happened
when they got to the door. Did the robot stop?

n	� Did the robot become a human and ‘fill in the
gaps’ by assuming they needed to open the
door to go through it?

Summarise that computers require precise
instructions and can only do exactly what they
are instructed to do.

n �Figure 1

helloworld.cc68

LESSON PLAN

ACTIVITY 2: WHAT IS PROGRAMMING? 5 MINUTES

ACTIVITY 3:
INTRODUCTION TO
SEQUENCING AND
MUSIC 5 MINUTES

Programming is how you get computers to
solve problems.

Highlight to the learners that as
programmers, they will learn how to get a
computer to solve problems. Unlike builders,

who are
constrained
by physical
limitations
such as the
number of
bricks they
have, or the
maximum
height of
a building,
as a
programmer,
there are

no such limits. The only thing that limits
a programmer is the expanse of their
imagination and their ability to use logic and
code to solve problems. In this unit, learners
will start to become equipped to solve
problems using logic and code.

Introduce these key terms:
n	� Sequence: running instructions in order
n	� Selection: making choices
n	� Iteration: doing the same thing more than

once

There is no need to go through these
words in detail at this stage, only to show
that there are different ways to control how
your instructions will be executed. Learners
will learn more about this during the course
of this unit.

Define sequencing as running
instructions in order. Ask learners to
think of any non-computing examples
of where instructions need to be
carried out in the correct sequence,
such as:

n	� Music scores
n	� Recipe books
n	� Furniture assembly instructions (note that

Lego characters are also on the image in
Figure 3; Lego assembly guides are also
good examples of sequencing!)

Ask the learners, if a computer was going
to be programmed to play music, what extra

information would it need?
A computer that was able to output sound

would be able to play a sequence, as long as it
was programmed to process:

1.	 What sound each note makes
2.	 How long to play each note for

n �Figure 2

n �Figure 3

@Image Figure2.jpg
@Image caption Figure 2
@Image caption ENDS

helloworld.cc 69

This task is designed to reinforce the key
concepts from this lesson (sequencing,
and the fact that computers need precise
instructions).

Print the ‘AP-worksheet’ (helloworld.cc/
sequencing) or write the following words on
cards: Boing, Bang, Wow, Splat, Kerpow, and
Boom. Add two image cards, for example a
picture of a lion and a picture of a splash.

Ask eight volunteers to come to the front
to hold up cards. The cards will have either
a sound to say, or an image. Add another
learner to be the conductor. Their job is to
sequence the cards how they wish and to
conduct them, i.e. tell them when to make
their sound.

When the conductor starts to tell the
learners with the cards to perform their
sounds, watch what happens when they
reach a learner with a picture. How did the
learner translate the sound? Did they even
perform it? This highlights that computers
need precise instructions, whereas humans
can interpret instructions without the
precision needed by a computer; humans
can make assumptions. Debug the sequence
by removing the pictures and then play the
sequence again.

If there is enough time, follow the
additional instructions on the worksheet to
help demonstrate to learners the concepts of
selection and iteration.

PLENARY 5–10 MINUTES

n �Figure 4

ACTIVITY 4:
FRÈRE JACQUES 20 MINUTES

Introduce the concept of pair programming.
Learners will be placed into pairs to
complete the work. They will take turns to
be the driver and the navigator:

n	� The driver’s role is to control the
keyboard and mouse and place the code
blocks into the correct places

n	� The navigator’s role is to support the
driver by watching for any mistakes,
reading the instructions to the driver,
and seeking support if needed

Arrange the learners into pairs, explain
the task, and distribute the worksheet for
learners to complete (Figure 4). Normally,
when using pair programming you would
swap roles every five minutes. As this isn’t
an overly long activity, we recommend that
you instruct the learners to swap roles at
the start of each new task.

The aim of this activity is for the learners to
use the Scratch program to place the blocks
into the correct places to create a working

program that will play Frère Jacques.
Ask learners to open the Frère Jacques

(the-cc.io/Y7sequencing1) Scratch
program.

Task 1: the Frère Jacques sequence
n	� Move the blocks into the correct

sequence so that the lyrics to the song
are in the correct order.

n	� To help you, try listening to the melody
again (helloworld.cc/frere-jacques).

Task 2: make your subroutines
n	� Listen to each block of music sequences

(the green blocks) by using a single click
on the block.

n	� Place the sequences under the
appropriate subroutine headings.	

Task 3: listen to your music
n	� Now press on the green flag on the top

right-hand side of the screen to listen to
your program play.

RELEVANT LINKS
TCC ‘Sequencing’ lesson:
helloworld.cc/sequencing

An open educational resource collection of unplugged AI
teaching activities

DEMYSTIFYING AI
verybody is talking about artificial
intelligence (AI), but student

knowledge about the topic is still limited. We
urgently need to demystify the technology
and make basic AI concepts understandable
for everybody if we are to ensure informed
participation in an AI-driven society in the
long term. To contribute to this work and
implement it successfully with different
age groups and students who have no CS
knowledge, or only a small amount, we
present a collection of AI activities that
mainly take an unplugged approach.

About the unplugged activities
These activities were designed as part of
the portable AI learning lab ‘AI in a Box’.
The activities deal with general functional
principles of AI, simulate AI applications,
consider the social and ethical dimensions
of AI, and give insights into AI research. The
games, experiments, and activities were

implemented in large wooden boxes; an
example is shown in Figure 1.

However, as this learning lab is only available
at one school at a time, and reproducing the
boxes is complex and costly, we went on to
develop pen-and-paper/print-and-cut versions
of our activities. These are independent of
the AI learning lab, and are available as open
educational resources (OER) so that they can
be taken to class and integrated easily into
different teaching scenarios.

The activities can be used for different
purposes. Some focus on introducing concepts,
mostly in group work or pairs, while others
serve to initiate discussion about different
aspects of AI. Several selected activities are
presented here, and more can be found on the
website (helloworld.cc/ai-in-a-box).

For all the activities, background texts are
available that can also be used in class to
guide the teaching when working with one
of the activities.

helloworld.cc70

ACTIVITY

ACTIVITY 1: WANTED:AI
This activity deals with the use of AI
systems in everyday applications. The
game introduces the topic and serves as
a basis for discussion.

In pairs, students decide whether or not
an object shown on a picture card uses
an AI system. The cards are categorised
accordingly; some of the objects shown
can be clearly identified, while some
cannot. The students' mappings are
then discussed in class. The items that
caused controversy or doubt (such as a
refrigerator or a cell phone) should be
examined more closely and explained.

E

n ��Figure 1 AI in a Box

helloworld.cc 71

With AI-operated image generators, it
is possible to create realistic images of
objects, landscapes, and even people. Other
creative artefacts, such as music, videos,
and art, can also be generated. This activity
demonstrates the difficulty of distinguishing
between AI-generated and human-made
artefacts. Problems such as deepfakes,
and the fake personas whose images and
CVs adorn social media profiles, can also
be discussed. AI-generated images can be
analysed in more detail, asking for example
which characteristics can be used to

distinguish a generated
face from a real one.
Afterwards, the methods
used to generate such
AI artefacts, for example
GANs (Generative
Adversarial Networks) or
transformer architectures,
can be explained.

This activity is carried
out as a poll. The teacher presents AI-
generated or real artefacts, either images,
videos, or music. The students vote on

whether each one is an AI-generated or
human-made artefact. Voting can be done
either with the help of coloured pencils or
voting cards, or digitally.

ACTIVITY 2: ARTIST UNKNOWN

ACTIVITY 4: REALITY TABOO

AI systems have found their way into many
areas of our daily lives. We encounter them
at school (in learning apps), when shopping
(as purchase suggestions), on streaming
platforms, and in medicine.

In this activity, students evaluate
different scenarios for the future use of
AI systems. These scenarios come from
the categories ‘School and work life’,
‘Medicine and healthcare’, ‘Climate and
ecology’, ‘Freedom and security’, ‘Politics
and law’, and ‘Everyday life’. The scenarios
are written on reversible cards and the
students decide how they feel about
each use of AI systems. To illustrate their
decisions, they place each reversible card
either with the positive (thumbs up) or
negative (thumbs down) side facing up on
the game board. After the first round, they
are asked to rethink their decisions, taking
the view of themselves when they are
15 years older. The respective decisions
and the students’ reasons for them can be
discussed in the class afterwards.

ACTIVITY 3: (DIS)LIKE

This activity serves to illustrate the
abstract ways in which an AI system can
process the world.

Students work in pairs and each pair is
given a set of picture cards. The game is
based on the well-known game ‘Taboo’:
one student describes as accurately
as possible a picture which is kept
hidden from the second student, using
only geometric shapes, line types, and
colours, as well as information about
direction and position. The partner
redraws the pictures as well as possible
based on the instructions given, and
finally tries to recognise the picture.

The restrictions on the description
ensure that it is not possible to use
complex or abstract terms, which
computer systems cannot use either.
The students therefore experience the
obstacles that arise when processing and

interpreting sensory data. For computers,
such data consists of individual coloured
pixels. Abstract concepts such as objects
or people are not displayed as a whole,
but consist of changing pixel patterns,
and have no meaning to the system.
In this activity, students recognise
that reality must be represented in
an appropriate, machine-processable
manner, and that this is not always
possible in any clear and meaningful way.
With this knowledge, you can discuss
with your class modern approaches
to image recognition with the help of
machine learning, and the functioning of
generative networks. The representation
of knowledge about the world and reality
by AI systems can also be discussed
following the activity.

helloworld.cc72

ACTIVITY

ACTIVITY 5:
ORACLE COPS
More and more law enforcement agencies
are testing AI systems to predict crimes, and
in some countries, these systems are already
fully integrated into everyday police work.
The functioning of these predictive policing
systems will be discussed in this activity.

In pairs, students receive a set of incident
cards, a city map, and marker tokens in two
colours. The students discuss the events on
the cards and decide whether they might
increase the risk of a crime. Based on their
decision, they lay out a colour token on
the city map. Once all the cards have been
processed, a possible route for the police can
be planned, depending on the potential risk
of a crime in the different areas of the city.

The aim of this activity is to sensitise
students to the fact that seemingly objective
AI systems have been trained on data that
has been influenced by humans. This data
does not contain a neutral evaluation, but
is characterised by the subjective attitudes
and views of humans. This also means
that it should not be assumed that the
data is necessarily free from issues such as
discrimination, sexualisation, radicalism, and
so on. Building on this, some of the events
included in the game can be analysed
further, and hidden information in socio-
geographical data can be discussed, along
with other critical application scenarios,
reinforcement of social inequalities, and the
role of bias in AI systems.

ACTIVITY 6: CRYPTO BATTLE
This activity aims to illustrate the
difference between a regular algorithm
and supervised machine learning (ML).

In groups of four, students try to
decrypt a text which reveals the hiding
place of the loot from a bank robbery. In
a competition to see who can decrypt
the text more quickly, two students
have to compose a decryption algorithm
with algorithm puzzle pieces, while
the other two are given example texts
of encrypted and decrypted words to
deduce the encryption and decryption

rules by learning from data. Three levels
of difficulty are available to suit varying
student ages and skill levels. After
decrypting the text, students compare
their different approaches and analyse
the strengths and weaknesses of both
sides. This should reveal how regular
algorithms have to be composed by
human programmers in detail, while ML
algorithms can learn rules from sample
data. It also shows the statistical nature of
ML results, which differs from the reliable
facts produced by regular algorithms.

ACTIVITY 7: PANDEMIC
This activity illustrates a possible usage
scenario for AI systems in medicine.

AI systems can be used to help
predict geographical risk areas for the
development of a pandemic. In pairs,
students take the role of an AI system
in evaluating different data which, at
first glance, does not seem to be linked
to medicine and the development of
diseases. However, it shows that socio-
geographical data provides a lot of
information about the overall state of
a society and can also help to predict
issues and risks in areas that are not
directly related to the data. These
aspects are discussed in detail after the
activity, asking questions such as: How
do conflicts or wars contribute to health
in the respective countries? Why is

population density a relevant factor? In
this context, it is also possible to present
real AI projects that have the goal to
predict epidemics and pandemics and
consider their actual success.

helloworld.cc 73

In this activity, the
students solve
bandolinos (puzzles
where you match
images or facts with
a string) on historical
facts in the field of AI.
They work together
in pairs or small
groups and use an overview poster or smaller
fact sheets to find the information needed to
solve the bandolinos. Afterwards, individual
events can be discussed and explored in

more detail. This activity is suitable for an
introduction to the historical background of AI,
as well as for a discussion around the overall
technical requirements of AI systems.

This activity illustrates the concept of Big Data
with a hidden object game.

By following stories that are hidden in
the picture, students trace data points in an
incredibly large amount of continuous data
and thus reveal information that is hidden in

the appparent chaos. You can then introduce
the concept of Big Data and show how AI
systems use such large amounts of data to
identify complex patterns. They can generate
information from large amounts of data which
is not visible to the human eye.

ANNABEL
LINDNER

Annabel is a
researcher in
CS education
at Friedrich-
Alexander-
Universität
Erlangen-
Nürnberg,

Germany. Her research focus is on AI
and teacher professional development,
and she enjoys developing innovative
teaching materials for K-12 CS
education.

MICHAELA
MUELLER-
UNTERWEGER
Michaela is a
grammar school
teacher from
the greater
Nuremberg
area. Besides
teaching
CS, maths
and economics, and business
administration and law, she lectures
at Friedrich-Alexander-Universität
Erlangen-Nürnberg, and develops
teaching materials and professional
development initiatives for CS education.

MARC BERGES
Marc is a
professor for
CS education
at Friedrich-
Alexander-
Universität
Erlangen-
Nürnberg.

His research focus is on AI and
programming education. He is co-
founder of the portable learning lab ‘AI
in a Box’.

WE NEED TO DEMYSTIFY THE TECHNOLOGY IF
WE ARE TO ENSURE INFORMED PARTICIPATION“

ACTIVITY 8: FESTIVAL HIDE AND SEEK

ACTIVITY 9:
ONCE UPON
A TIME

How to unlock funding for your classroom

ver feel like you’re short on resources for your students,
but unsure how to get the funding you need? You’re not

alone. The good news is that getting funded often comes down to
one simple step: asking for it! It might seem obvious, but so many
educators miss out because they don’t take that crucial leap.

What it takes to get funding
Getting those much-needed resources into your students’ hands is
absolutely worth the effort. Here’s what you’ll want to keep in mind:

n	� Do your homework: this is key! You’ll need to research potential
funding sources to find the best fit.

n	� Be an advocate for your students: you are your students’
biggest champion! Tell grant judges exactly who you are, what
you need, and why it is important. They need to truly grasp
who and what the funding is for and how it will enhance your
students’ learning journey.

E n	� Dedicate time to write: the grants I’ve been fortunate enough
to win all required a bit of time and thoughtfulness. I’d really
think about what was needed and why, do my research, and
even ask my students for their input (their perspective is a huge
plus). Then I’d take the time to write it out carefully, have others
read it over, and finally submit it.

Trust me, putting in this effort is SO worth it. You’ll be thrilled you
did, and most importantly, your students will reap the benefits.

Finding those golden opportunities
So, where do you even begin looking for grants? Here are some
friendly suggestions:

n	� Chat with your administration: administrators receive countless
emails about grant opportunities. A simple request for them to
forward these to you can open up a world of possibilities.

INSIDER’S GUIDE
TO GRANT WRITING

INSIDER’S GUIDECONVERSATION

1. Do your research
n	� Know your funder: get to know the company or group offering

the grant. Understand their mission and vision, and weave this
information into your writing. It makes a tremendous difference!

n	 �Gather data on your request: if there is statistical data
supporting the benefits of what you want to purchase, include it!
This shows you have done your homework.

n	 �Share your personal stories: if you have used something similar
in the past, personal experiences are incredibly powerful. Share
that data! If you have before-and-after test data, use it. If not,
start collecting it now for future applications.

2. Get your school data
At the start of each term, I ask my registrar for school data broken

down by grade level, and data for my own classes. This includes:

n	� Number of free/reduced lunch students
n	� Gender breakdown
n	� Ethnicity breakdown
n	� Total students in each grade

3. Make a budget
Even if the grant doesn’t ask for it, including a budget is a great idea.
It gives the grant-giver a clear picture of how you plan to spend
the money. Be as detailed as you would for a purchase order (item
number, quantity, description, unit price, total price). This also helps
you remember what the grant was for, as you might not hear back for
months. (I once waited five months to hear I won a grant!)

Ready to dive into applying? Here are some practical steps to help you succeed:

GRANT WRITING TIPS: YOUR STEP-BY-STEP GUIDE

helloworld.cc74

n	� Reach out to district personnel and local authorities: they
often have a pulse on available funding too.

n	� Check your state’s teaching organisation newsletter: in the
US, these newsletters are treasure troves of grant opportunities,
sometimes even from the organisations themselves!

n	� Join social media groups: I’m part of many STEM and cyber
groups, and they are constantly sharing grant opportunities. It’s
a fantastic way to stay in the loop.

n	� Get involved locally: local civic organisations frequently
offer grants. Contact your local chapter of these international
organisations: Civitan International (civitan.org), Optimist
International (optimist.org), and Rotary (rotary.org). In the US,
I’ve received funding from the Air & Space Forces Association
(afa.org) and the Civil Air Patrol (gocivilairpatrol.com).

n	� Don’t forget Google: seriously, hundreds of grants go
unclaimed each year simply because there aren’t enough
applications. Try a search like ‘STEM grants for teachers’ and
prepare to be amazed by the results!

KALA GRICE-DOBBINS
Kala, a teacher in the Madison County
School District in Huntsville, Alabama,
USA, was recognised as Teacher of
the Year for Madison County Schools
in 2024–2025 and by the Alabama
State Association in 2025. She
also earned the distinction of first
runner-up nationally for the Air &
Space Forces Association’s Teacher
of the Year award (LinkedIn: Kala
Grice-Dobbins, kgricedobbins@
madison.k12.al.us).

4. Get fresh eyes on it (outside your school)
Have someone who isn’t an educator read over your grant
application. Many grants come from non-educational organisations,
so it’s vital that your writing is clear and understandable to anyone,
regardless of their background. This also helps you to catch
anything you might have missed.

5. Get fresh eyes on it (inside your school)
Next, have a colleague within your school read it. They can check
your school stats and ensure the data aligns with your students.
They might even offer valuable insights.

6. Keep a copy
Always make a copy of your entire application and file it away. I
apply for many grants throughout the year, and it’s helpful to refer
back to them when I finally hear the results. Plus, they can be a
wonderful resource for future grant applications.

Now it’s your turn!
Take some time to search and find a grant that would be a perfect
fit for your class, then start drafting your application in a Google Doc
(never just fill it out directly online — this way, you have a copy and
can come back to it).

Over the past ten years, I’ve won nearly 30 grants ranging from
$500 to $30,000. I’m proof that you can do this too, and the reward
is being able to give your students the tools and equipment they
need to further their education. For more information, you can
watch the presentation I recently gave for Firia Labs (firialabs.com)
at helloworld.cc/grant-writing.

You’ve got this!

n Receiving a grant from the Tennessee Valley Authority

n �Getting those much-needed resources for your students
is absolutely worth the effort of writing a grant application

helloworld.cc 75

helloworld.cc76

Chidi Duru shares insights from his time leading a Code Club for Deaf children

odeant Technology Hub (codeant.org) is a Nigerian
organisation with a mission to foster educational

empowerment through programming. Working across Imo State,
they partner with Code Club to nurture a community of curious,
lifelong creators.

Codeant took up a valuable opportunity to set up a club with a
group of Deaf young people and learn alongside them. For many
of the young people, the club was the first time in their lives that
they had used a computer. We caught up with Chidi about his time
leading the Code Club.

What were your first thoughts and feelings when you started
planning your Code Club?
I was excited about the opportunity to unlock a new world for
the young people — coding, creativity, and problem-solving. But
I also felt the weight of the challenge: how do I teach coding to
kids who are learning to use a computer for the first time, and who
communicate differently?

I also knew there could be issues with the available infrastructure:
old or slow computers, power outages, and limited access to
the internet or learning aids. I was determined, though, because
I believe that inclusivity in tech starts with giving everyone —
regardless of ability — a fair chance to learn and grow.

How did you make your Code Club accessible for Deaf creators?
I approached it with simplicity, clarity, and accessibility in mind. First,
I broke down the Code Club ‘Introduction to Scratch’ project path

C (helloworld.cc/scratchintro) into visual step-by-step guides so the
creators could follow along independently.

To support communication, I had an experienced sign language
teacher working with me, and I’m learning it myself.

I also integrated live demonstrations and visual storytelling. For
example, instead of saying, ‘Make the cat move ten steps’, we used
real-life gestures and visual cues, like arrows and body movement,
to help understanding. We used other non-verbal cues, like raising
hands to ask for help, thumbs up for ‘I’m ready’, and applauding (by
waving raised hands) to celebrate achievements.

These simple adaptations have made the learning environment
more inclusive, interactive, and fun for everyone.

What’s it like to see creators finish a project?
The joy is unmistakable, even without words. Their expressions say
it all: wide smiles, excited gestures, clapping, and proudly showing
their screens to their peers.

Seeing them go from hesitant to confident, from passive
observers to active creators, is incredibly fulfilling. You can feel their
sense of ownership and pride — it’s not just about finishing a task,
but about building something of their own for the first time. That
confidence boost is priceless.

Do your creators solve problems in unique ways that could
help others?
Absolutely. Because they process information visually and often
non-verbally, they naturally approach problems in creative, out-

THE JOY OF CODING
ALONGSIDE DEAF CREATORS

MEET THE CODE CLUBCONVERSATION

helloworld.cc 77

of-the-box ways. I’ve seen them troubleshoot by mimicking sprite
movements with their hands, or by physically demonstrating what
the code should do.

Their ability to focus on visual logic and spatial awareness is
something all learners could benefit from. It’s a reminder that
coding is not just about syntax — it’s about thinking, creativity,
and expression.

Most importantly, they are learning that they can do hard things,
and that mindset will serve them for life.

How has this experience changed your ideas about teaching,
accessibility, and tech for young people?
I have come to deeply appreciate the power of inclusive teaching,
how adjusting methods to meet learners where they are can unlock
so much potential.

Technology should be a leveller, not a divider. This experience has
shown me that with patience, the right tools, and empathy, every
child, regardless of ability, can become a tech creator. Accessibility
is not an add-on — it’s a foundation for equitable learning.

What message would you share with others who are starting a
Code Club for creators with diverse accessibility requirements?
Start small, but start. You don’t need to have all the answers, just
the heart to try and learn alongside your students. Inclusion is not
about perfection — it’s about presence and persistence.

These creators have so much to offer. With your support, they
will show you what is possible when tech truly becomes for
everyone.

Has Chidi’s story inspired you to make an impact? Join our
community of passionate mentors! With active Code Clubs in
over 100 countries, there’s a place for you. Ready to get started?
Check out codeclub.org/mentor.

CHIDI DURU
Chidi is the co-founder
of Codeant Technology
Hub in Nigeria, where
he leads a Code Club for
Deaf creators. He teaches
coding, robotics, and AI to
children, teens, and women,
empowering communities
through digital skills.

n �Sign language teacher supporting the Code Club

n �Creators working on their projects

THEIR ABILITY TO FOCUS ON
VISUAL LOGIC AND SPATIAL
AWARENESS IS SOMETHING
WE CAN ALL LEARN FROM

“

helloworld.cc78

Embracing artistry in computer science education

ven in the most highly technical, tedious work, we can’t
help but be creative. Deep inside our devices, scrawled in

silicon, are microscopic works of art hidden by engineers for whom
the pride of technical achievement wasn’t enough. Silicon doodling
describes a practice in which engineers hide images on the chips
they design (helloworld.cc/silicon-zoo).

Perhaps this helps explain why, in my classroom, even students
who love to code are most engaged by technical lessons that allow
for self-expression. In one particular assignment, fifth-graders
(10- to 11-year-olds) are asked to write code using a creative
coding platform (p5.js; p5js.org) to draw shapes on a coordinate
plane and eventually create a self-portrait. Calling functions, using
variables, and understanding RGB (red, green, blue) colour, become
an exercise in identity exploration. Some students adorn their self-
portraits with contextual details, such as wearing the jersey of an
athlete they admire, or making the background reflect their favourite
neighbourhood park. Other students focus on the simplicity and
specificity of the portrait itself, with many spending an entire class
period trying to pick out the right skin tone or rearranging different
shapes to create the perfect hairdo. Like most of my assignments,
this one begins with an unplugged activity.

Portrait programs
Before jumping on their computers, students draw portraits of each
other on paper, following sets of rules which we call ‘programs’. Here’s
an example: ‘IF left-handed, hold your pencil in your right hand. ELSE,
hold your pencil in your left hand. Draw your subject for one minute,
then stop. Switch hands. Draw everything you see around your subject
for two minutes, then stop.’ As they execute these ‘programs’, students
practise sequential thinking without the technical intimidation of a
text editor. We also use this activity as the catalyst for our discussions
around identity: ‘How do you see yourself? How do you see your
peers? How do you want others to see you?’

E

Self-expression
When I devised these portrait programs, I drew inspiration from
Fluxus artwork created in the 1960s. The Fluxists were known for
their conceptual approach to performance art, valuing simple actions,
everyday objects, and the quotidian. Their performances did not
follow the formal structure of a play. Taking inspiration from musical
compositions, the artists wrote poetic ‘event scores’, or pseudocode-
style texts with predetermined rules, for their performers to follow
(helloworld.cc/fluxus-event-scores).

At the same time that Fluxus artists were coding performances,
NASA programmers working on the Apollo Guidance Computer
(yes, the ones responsible for taking us to the moon) were quoting
Shakespeare in the comments of their code (helloworld.cc/
nasa-code).

By sharing stories and moments like these in the classroom, I
hope to show my students that art is technical, that programmers
are imaginative, and that ultimately, when we make something, we
should express ourselves and have fun. Our students have a lot to
say, and we should foster their artistic voice by purposefully leaning
into and celebrating creativity. This is especially valid in computer
science, where there is a long history of programmers personalising
their work in artful and unexpected ways.

SELF-PORTRAITURE
THROUGH CODE

PERSONAL ACCOUNTCONVERSATION

TESS RAMSEY
Tess is a new media artist,
technologist, and educator. They run
a makerspace and teach creative
and computational thinking classes
to students in grades 5–8 at the
Speyer Legacy School in New York,
USA (tessramsey.com).

n Students write code to create a self-portrait

©
 Te

ss
Ra

ms
ey

helloworld.cc 79

In the parking lot below, cars
can be parked in parking
spaces or in front of these
parking spaces.

If a car wants to leave
its parking space, the cars

that are parked in front of
the parking spaces can be
carefully moved forwards or
backwards in order to unblock
the movement of the car that
wants to leave.

Example
n	� Car A is not blocked and can

leave its parking space
n	� Car L is blocked by car M
n	� Car M must move backwards

before car L can leave its
parking space

Task
Select the car that needs two
other cars to move forwards or
backwards before it can leave
its parking space.

Background
This task involves two aspects
related to computer science:

1.	� A brute-force algorithm to
search through all possible
candidate cars and check
which is the one that has the
required property, i.e. which
car can only leave its space
after two other cars are
pushed away.

2.	� The autonomous (automatic)
parking algorithms, which
are becoming more and more
available in cars nowadays. A
lot of research is done in the
field of public transportation/
parking systems based on
autonomous vehicles. One
of the advantages is that

autonomous vehicle parking
can be done very efficiently.

This task can be used as an
introduction to autonomous
systems or adapted as an
unplugged activity. In addition,
learners would use abstraction,
decomposition, and evaluation
to solve the task.

This puzzle was developed
by the Bebras team in Germany,
and reviewed and modified
by members of the Bebras
international community. The
solution is on page 81.

THE PROBLEM:
PARKING ISSUES

THE BEBRAS
PUZZLE PAGE
Each issue, Andrew Csizmadia shares a computational thinking
problem for your students based on the work produced by the
International Bebras Community

Algorithms, logic, and
programming

Abstraction, decomposition,
and evaluation

8–14 years

Ages 8–10 hard
Ages 10–12 medium
Ages 12–14 easy

DOMAIN

SKILLS

AGE

DIFFICULTY RATING

PUZZLEBEBRAS

Bebras is organised in over 90 countries and aims to get
students excited about computing and computational
thinking. Last November, 467,000 students participated
in the UK annual challenge. Our archived
questions let you create your own
automarking quizzes at any time during the
year. To find out more and to register your
school, head to bebras.uk.

ABOUT BEBRAS

KEYWORD SPOTLIGHT:
BRUTE-FORCE ALGORITHM
Defining everyday words and
phrases in computer science

A brute-force algorithm is a
straightforward problem-solving
technique that systematically
checks every possible solution
until the correct one is found, if
one exists. It doesn’t use clever
logic or shortcuts to narrow
down the search space; it simply
relies on sheer computing power
to exhaust all possibilities.

A simple analogy is trying to
open a three-digit combination
lock by methodically testing
every single number sequence,
starting from 0-0-0, until the
lock opens.

While this method is easy
to design and guarantees
finding a solution if one
exists, it is often incredibly
inefficient and slow. The
number of potential solutions
can grow exponentially with
the problem’s size, making it
impractical for complex tasks
like cracking long passwords.
It is most suitable for small-
scale problems where the total
number of possible solutions is
manageable.

helloworld.cc80

Tracy Gardner introduces spatial computing to Michael Conterio

lthough AI is dominating the headlines, it isn’t the only
part of computing undergoing rapid advancements that

could impact your learners. Join Tracy Gardner as she discusses
one of these new technologies with Michael Conterio.

What is spatial computing?
Spatial computing is a term used to describe systems that combine
the physical and digital worlds in new ways. It typically involves
working in 3D space in both the physical and digital worlds.

In a video for the World Economic Forum, futurist
Cathy Hackl said when describing spatial computing, “What
we’re talking about is the future of how humans will interact with
technology. It is an evolving, 3D-centric form of computing that
at its core uses AI, computer vision, extended reality, and other
technologies to seamlessly blend virtual content and experiences
in someone’s experience of the physical world.” (helloworld.cc/
spatial-computing)

There are many other related terms such as the metaverse,
extended reality (including virtual reality and augmented reality),
immersive technology, and Web 4.0. These all capture different
aspects of 3D technology and the future of the way humans
interact with the digital world.

How is this different from physical computing?
Physical computing is only one part of spatial computing. It’s the
part that connects the physical world to the digital world using
inputs, outputs, and sensors. For example, a spatial computing
system might detect the movement of a person wearing a
headset using an accelerometer. Developing physical computing
skills is a key part of understanding how to build spatial
computing systems.

A So how does it build on physical computing to create
something new and modern?
The key change we are seeing is the progress in the physical devices
that we use. A few months ago I was fortunate enough to participate
in a developer day with Snap where I got to try their new ‘Spectacles’
device, which allows you to overlay digital content onto the physical
world and interact with others (spectacles.com). There has also been
a lot of excitement around a potential new device from former Apple
designer Jony Ive and OpenAI that could be the answer to ‘what next
after the mobile phone’. We’re seeing progress in the capabilities
of physical devices that we carry that could lead to new ways to
interface between the physical and digital world.

Niantic created the geospatial technology behind Pokémon GO,
which uses a combination of GPS signals, an accelerometer, and visual
data to populate the real world with monsters that you can interact
with through the app. They are now focusing on industry applications
of spatial computing, including spatial planning and design, and
warehouse logistics (helloworld.cc/niantic-spatial-platform).

Why should I be interested in this? Google made some
glasses a while ago and then no one really liked them.
It’s true that this is a bumpy journey. That’s what typically happens
when new technology is developed. Companies might not get it
right the first time. One theme is hardware becoming smaller so the
technology becomes more practical — who wants a huge battery
pack strapped to their head?

At the same time, improvements in networks, storage, sensors,
and 3D visualisation have pushed forward what is possible in
industry. This includes developing ‘digital twins’ which allow us to
create 3D visualisations of real systems, such as robots or power
plants, which then make information accessible in real time.

SPATIAL COMPUTING

CONVERSATION

©
 Ja

ck
ie

Nia
m/

sto
ck

.ad
ob

e.c
om

n �Spatial computing allows us
to create 3D visualisations
of real systems

EVOLVING COMPUTINGCONVERSATION

helloworld.cc 81

BEBRAS PUZZLE SOLUTION:
PARKING ISSUES
(PAGE 79)

PUZZLEBEBRAS

How can we have a say in how society uses these
technologies?
It’s important to have conversations about how humans interact
with technology and think through what kind of relationship we
want to have with technology in the future. These need to include a
range of different viewpoints and demographics of those who might
be impacted, not just people who want to develop technology.

Having a well-informed citizenry will help drive governments to
produce appropriate legislation and guidance to control this tech, to
allow people to make their own choices about interacting with it.

What is it like to program these devices/uses? What is
different from ‘regular’ programming?
It’s really important to understand 3D concepts and how objects are
positioned in 3D space. Spatial data is really important. This can be
positioning objects in digital 3D space or understanding geospatial
data in the physical world. This can be on a small scale such as
accelerometer data detecting movement, or large-scale positioning
such as GPS data. An example would be using motion data from a
person to control aspects of a live theatre performance.

Does spatial computing use other insights from video
games or 3D animation?
Absolutely. The industry around spatial computing builds on
technology that has come from video games. At one time, 3D
skills were mostly used for creating video games. Now virtual film
production is common, this mixes techniques such as motion capture
with digitally created 3D content. But the applications are much
broader: 3D-creation technology is also used in fashion (‘trying on’
clothes digitally), interior design (viewing different lighting effects),
architecture (walking around a proposed building), engineering
(monitoring and modelling a plane in flight), scientific simulation
(discussing a shared 3D view of an X-ray with a colleague), education
and training (practising first aid), robotics (delivering shopping), and
immersive entertainment experiences (reacting to an audience).

TRACY GARDNER & MICHAEL CONTERIO
Tracy is a computer scientist, tech industry professional, technology
educator, and a co-founder of Flip Computing. Michael is a former
physicist and now works as an online course production manager at
the Raspberry Pi Foundation.

helloworld.cc 81

Solution: Car I
Explanation
Car I is blocked by car N. There is not enough space to push car
N away so that car I can leave its parking space. Therefore, car
O must be pushed backwards, then there is space to push car
N away for car I to leave its parking space ...

Alternatively, car M must be pushed forwards. Then, there is
space to push car N away for car I to leave its parking space.

There is no other car for which two cars must be pushed away
so it can leave its parking space:
Cars A, D, E, J, and Q can leave their parking spaces
immediately.
Cars B, C, F, G, H, K, and L can leave their parking spaces when
only one car is moved.

How can I bring this into my classroom?
Firstly it’s important for young people to feel that they can influence
technology. Lots of the details of how we will use spatial technology
are still being worked out. It’s valuable to discuss controversial
topics such as whether we would want robots taking care of the
elderly, or whether we want people walking around with easy-
access spectacles with cameras.

Then on the technology side, you can make connections to
the 3D technologies that many young people are familiar with
from the games and social platforms they use. You may already
include 3D-creation tools, such as Blender, in your curriculum,
or run physical computing projects that collect 3D spatial data
(for example using a micro:bit). When teaching using these
technologies, make sure that you make links to spatial computing
and how the skills they are learning are directly applicable to
building the technology systems of the future.

helloworld.cc82

Mark Crane shares his tips for a strong start to the school year

or many of us, this time of year is the start of a new school
year. Our classroom management and routines are a big part

of getting ready for the year ahead, but the challenges we face as
computing teachers are seldom understood beyond our subject area.

Imagine the scene. Students begin to arrive outside your
classroom, eager to enter and get settled in. You, like your students,
are bright-eyed and bushy-tailed, having rested for six weeks or
so. Your lesson is planned, the smart board is on, and you have
switched on the computer and monitor at each workstation and
checked they are working. You assume that each machine has
access to the internet, the school network, and all the required
software for this lesson. You open the door and greet students as
they enter. You also have a new seating plan to roll out, a register
to take, a ‘do now’ activity to deliver, and a reminder to give about
classroom expectations. You implement the new seating plan and
ask students to log in — and this is where it gets tricky.

Some students’ fluency with using desktop hardware such as
mice and keyboards is strong, and so are their literacy levels. For
these students, logging in is a breeze. However, for many students,
this is not the story we know.

Some of our students have low levels of literacy, and so entering

F their credentials is challenging. Most of our students have mobile
devices which automatically remember their passwords (gone are
the days when we could recite several telephone numbers from
memory). But many students are not skilled in using a mouse or
keyboard, particularly younger students who have not yet studied
computing. These are not criticisms of our students; they are
acknowledgements of the challenges we face today, which I am
sure resonate with you too.

Our ability to manage our classes effectively in an IT suite is not
just beneficial, it is absolutely necessary if high-quality teaching
and learning is to take place. We need to take our classroom
management seriously, and reflect on our practice, looking at the
range of contributing factors that affect the start of our lessons.

Four strategies for a fruitful start
Here are my top tips for a strong start to the school year:

1.	 Develop and print out a seating plan and place students
	 according to the plan as they enter the room.
2.	� Value people: as hard as it can be, remember students’ names,

and use them! This is critical for relationship building.
3.	� Prepare a ‘do now’ activity: display an open-ended/lateral-thinking

activity on the board for students to complete while others are
getting logged on (helloworld.cc/lateral-thinking-puzzles).

4.	� Remember your IT support staff: utilise your network manager
and team of technicians. They are often prepared to be on
hand to help with password resets and to assist with ensuring
equipment is up to date and in working order.

I hope that you have a successful start to the new academic year,
and remember to be kind to yourselves; teaching is challenging, and
we are all still learning.

START AS YOU MEAN TO GO ON

PERSONAL ACCOUNTCONVERSATION

MARK CRANE
Mark is the curriculum leader for
computing at Sir Harry Smith Community
College in Cambridgeshire, UK. He has
over ten years of experience in education,
specialising in the development of
curriculum and professional development
for experienced and trainee teachers.

©
 C&

A/
sto

ck
.ad

ob
e.c

om

helloworld.cc 83

helloworld.cc/subscribe
TO SUBSCRIBE VISIT:

SUBSCRIBE
TODAY

Prefer a print copy?
Visit helloworld.cc/buy —
we ship to over 50 countries.

We never charge full price.
Your purchase contributes to
the storage, processing, and
shipping of your print copy.

• Never miss an issue of Hello World

• Get notified about our latest
podcast episodes

�• Exclusive news, the latest research
findings, and in-depth features

• Free, convenient, and full of practical
ideas you can use straight away

Why subscribe?

FREE
PDF
for anyo

ne,

anywhe
re

FREEIN PRINTfor UK-based educators

(helloworld.cc)84

helloworld.cc

