

KICAD LIKE A PRO, THIRD
EDITION

KiCad Like a Pro, 3rd Edition
By Dr Peter Dalmaris

Copyright © 2021 by Tech ExplorationsTM

All rights reserved. This book or any portion thereof may not be reproduced or used in any
manner whatsoever without the express written permission of the publisher except for the use of brief
quotations in a book review.

Printed in Australia

First Printing, 2018

ISBN (PDF) : 978-1-68489-093-4
ISBN (epub): 978-1-68489-094-1
ISBN (mobi): 978-1-68489-089-7

Tech Explorations Publishing
PO Box 22, Berowra 2081 NSW
Australia

www.techexplorations.com

Cover designer: Michelle Dalmaris

Disclaimer
 The material in this publication is of the nature of general comment only, and does not represent

professional advice. It is not intended to provide specific guidance for particular circumstances and it
should not be relied on as the basis for any decision to take action or not take action on any matter
which it covers. Readers should obtain professional advice where appropriate, before making any
such decision. To the maximum extent permitted by law, the author and publisher disclaim all
responsibility and liability to any person, arising directly or indirectly from any person taking or not
taking action based on the information in this publication.

Version 1

Did you find an error?

Please let us know.
Using any web browser, go to txplo.re/kicadr, and fill in the form.
We’ll get it fixed right away.

About the author

Dr. Peter Dalmaris is an educator, an electrical engineer, electronics
hobbyist, and Maker. Creator of online video courses on DIY electronics and
author of several technical books. Peter has recently released his book 'Maker
Education Revolution', a book about how Making is changing the way we
learn and teach in the 21st century.

As a Chief Tech Explorer since 2013 at Tech Explorations, the company
he founded in Sydney, Australia, Peter’s mission is to explore technology and
help educate the world.

Tech Explorations offers educational courses and Bootcamps for
electronics hobbyists, STEM students, and STEM teachers.

A lifelong learner, Peter’s core skill lies in explaining difficult concepts
through video and text. With over 15 years of tertiary teaching experience,
Peter has developed a simple yet comprehensive style in teaching that
students from all around the world appreciate.

His passion for technology and the world of DIY open-source hardware,
has been a dominant driver that has guided his personal development and his
work through Tech Explorations.

About Tech Explorations

Tech Explorations creates educational products for students and
hobbyists of electronics who rather utilize their time making awesome
gadgets instead of searching endlessly through blog posts and Youtube
videos.

We deliver high-quality instructional videos and books through our
online learning platform, txplore.com.

Supporting our students through their learning journey is our priority,
and we do this through our dedicated online community and course forums.

Founded in 2013 by Peter Dalmaris, Tech Explorations was created after
Peter realised how difficult it was to find high-quality definitive guides for the
Arduino, written or produced by creators who responded to their reader
questions.

Peter was frustrated having to search for Youtube videos and blog
articles that almost never seemed to be made for the purpose of conveying
knowledge.

He decided to create Teach Explorations so that he could produce the
educational content that he wished he could find back then.

Tech Explorations courses are designed to be comprehensive, definitive
and practical. Whether it is through video, ebook, blog or email, our delivery
is personal and conversational.

It is like having a friend showing you something neat... the "AHA"
moments just flow!

Peter left his career in Academia after his passion for electronics and
making was rekindled with the arrival of his first Arduino. Although he was
an electronics hobbyist from a young age, something the led him to study
electrical and electronics engineering in University, the Arduino signalled a
revolution in the way that electronics is taught and learned.

Peter decided to be a part of this revolution and has never looked back.
We know that even today, with all the information of the world at your

fingertips, thanks to Google, and all the components of the world one click
away, thanks to eBay, the life of the electronics hobbyist is not easy.

Busy lifestyles leave little time for your hobby, and you want this time
to count.

We want to help you to enjoy your hobby. We want you to enjoy
learning amazing practical things that you can use to make your own
awesome gadgets.

Electronics is a rewarding hobby. Science, engineering, mathematics,
art, and curiosity all converge in a tiny circuit with a handful of components.

We want to help you take this journey without delays and frustrations.
Our courses have been used by over 70,000 people across the world.
From prototyping electronics with the Arduino to learning full-stack

development with the Raspberry Pi or designing professional-looking printed
circuit boards for their awesome gadgets, our students enjoyed taking our
courses and improved their making skills dramatically.

Here's what some of them had to say:

"I'm about half way through this course and I am learning so much. Peter is
an outstanding instructor. I recommend this course if you really want to learn about
the versatility of the amazing Raspberry Pi" -- Scott

"The objectives of this course are uniquely defined and very useful. The instructor
explains the material very clearly." -- Huan

"Logical for the beginner. Many things that I did not know so far about Arduino but
easy to understand. Also the voice is easy to understand which is unlike many courses
about microcontrollers that I have STARTED in the past. Thanks" -- Anthony

Please check out our courses at techexplorations.com and let us be part
of your tech adventures.

From the back cover

Printed circuit boards (PCBs) are, perhaps, the most undervalued
component of modern electronics. Usually made of fibreglass, PCBs are
responsible for holding in place and interconnecting the various components
that make virtually all electronic devices work.

The design of complex printed circuit boards was something that only
skilled engineers could do. These engineers used expensive computer-aided
design tools. The boards they designed were manufactured in exclusive
manufacturing facilities in large numbers.

Not anymore.
During the last 20 years, we have seen high-end engineering capabilities

becoming available to virtually anyone that wants them. Computer-aided
design tools and manufacturing facilities for PCBs are one mouse click away.

KiCad is one of those tools. Perhaps the world’s most popular (and
best) computer-aided design tool for making printed circuit boards, KiCad is
open source, fully featured, well-funded and supported, well documented. It
is the perfect tool for electronics engineers and hobbyists alike, used to create
amazing PCBs. KiCad has reached maturity and is now a fully featured and
stable choice for anyone that needs to design custom PCBs.

This book will teach you to use KiCad. Whether you are a hobbyist or
an electronics engineer, this book will help you become productive quickly,
and start designing your own boards.

Are you a hobbyist? Is the breadboard a bottleneck in your projects? Do
you want to become skilled in circuit board design? If yes, then KiCad and
this book are a perfect choice. Use KiCad to design custom boards for your
projects. Don’t leave your projects on the breadboard, gathering dust and
falling apart.

Complete your prototyping process with a beautiful PCB and give your
projects a high-quality, professional look.

Are you an electronics engineer? Perhaps you already use a CAD tool
for PCB design. Are you interested in learning KiCad and experience the
power and freedom of open-source software? If yes, then this book will help
you become productive with KiCad very quickly. You can build on your
existing PCB design knowledge and learn KiCad through hands-on projects.

This book takes a practical approach to learning. It consists of four
projects of incremental difficulty and recipes.

The projects will teach you basic and advanced features of KiCad. If you
have absolutely no prior knowledge of PCB design, you will find that the
introductory project will teach you the very basics. You can then continue
with the rest of the projects. You will design a board for a breadboard power
supply, a tiny Raspberry Pi HAT, and an Arduino clone with extended
memory and clock integrated circuits.

The book includes a variety of recipes for frequently used activities. You
can use this part as a quick reference at any time.

The book is supported by the author via a page that provides access to
additional resources. Signup to receive assistance and updates.

1

How to read this book

I designed this book to be used both to learn how to use KiCad, and as a
reference.

All examples, descriptions and procedures are tested on the nightly
releases of KiCad 6 (also known as KiCad 5.99) and in KiCad 6 RC1.

If you have never used KiCad and have little or no experience in PCB
design, I recommend you read it in a linear fashion. Don’t skip the early
chapters in parts 1 to 8 because those will give you the fundamental
knowledge on which you will build your skill later in the book. If you skip
those chapters, you will have gaps in your knowledge that will make it harder
for you to progress.

If you have a good working knowledge of PCB design, but you are new
to KiCad, you can go straight to Parts 7 and 8, zoom through them quickly,
and then proceed to the projects in Part 9.

Once you have the basic KiCad concepts and skills confidently learned,
you can use the recipes in Parts 7, 8 and 13 as a resource for specific problems
you need solved. These recipes are useful on their own. Throughout the text,
you will also find prompts to go to a particular recipe in order to learn a
specific skill needed for the projects.

Throughout this book, you will find numerous figures that contain
screenshots of KiCad. To create these screenshots, I used KiCad 5.99 and
KiCad 6.0 RC1 running on Mac OS. If you are using KiCad under Windows or
Linux, do not worry: KiCad works the same across these platforms, and even
looks almost the same.

Although I took care to produce images that are clear, there are cases
where this was not possible. This is particularly true in screenshots of an
entire application window, meant to be displayed in a large screen. The role of
these images is to help you follow the instructions in the book as you are
working on your computer. There is no substitute to experimenting and
learning by doing, so the best advice I can give is to use this book as a text
book and companion. Whenever you read it, have KiCad open on your
computer and follow along with the instructions.

This book has a web page with resources designed to maximize the
value it delivers to you, the reader. Please read about the book web page, what
it offers and how to access it in the section 'The book web page', later in this
introductory segment.

2

Finally, you may be interested in the video course version of this book.
This course spans over 25 hours of high-definition video, with detailed
explanations and demonstrations of all projects featured in the book. The
video lectures capture techniques and procedures that are just not possible to
do so in text.

Please check in the book web page for updates on this project. Be sure to
subscribe to the Tech Explorations email list so I can send you updates.

3

Requirements

To make the most out of this book, you will need a few things. You
probably already have them:

• A computer running Windows, Mac OS or Linux.
• Access to the Internet.
• A mouse with at least two buttons and a scroll wheel. I use a Logitech MX

Master 2S mouse (see https://amzn.to/2ClySq0).
• Ability to install software.
• Time to work on the book, and patience.

4

The book web page

As a reader of this book, you are entitled access to its online resources.
You can access these resources by visiting the book’s web page at

txplo.re/kicadr.
The two available resources are:
1. Photos and schematics. Get high-res copies of the photos, schematics,

and layouts that appear in the book.
2. An errata page. As I correct bugs, I will be posting information about

these corrections in this page. Please check this page if you suspect that you
have found an error. If an error you have found is not listed in the errata
page, please use the error report form in the same page to let me know about
it.

5

Why all the ?? in the TOC?
The version of the book you are looking at is the video course companion.

This version of the book contains specific chapters from the full book - not
all of them.

For this reason, any chapter from the full book that is not available in this
companion is marked with “??” Instead of an actual page number in the Table
of Contents.

All the pages and chapters from the full book that are present in the
companion book will have the actual page number correctly listed in the TOC.

6

Table of Contents
Introduction 29

1. What is a PCB? 30
2. The PCB design process 36
3. Fabrication 41
4. Get KiCad for your operating system 43
5. Example KiCad projects 47

Part 2: Getting started with KiCad 6 56
1. Introduction 57
2. KiCad Project Manager (main window) 58
3. Overview of the individual KiCad apps 64
4. Paths and Libraries 72
5. Create a new project from scratch 76
6. Create a new project from a template 78
7. KiCad 6 on Mac OS, Linux, Windows 82
8. Differences between KiCad 6 and 5 87

Part 3: Project - A hands-on tour of KiCad - Schematic Design 89
1. Introduction to schematic design and objective of this section 90
Design workflows summary ??
The finished KiCad project and directory ??
Start Kicad and create a new project ??
1 - Start Eeschema, setup Sheet ??
2 - Add symbols ??
3 - Arrange, annotate, associate ??
4 - Wiring ??
5 - Nets ??
6 - The Electrical Rules Check ??
7 - Comments with text and graphics ??

Part 4: Project- A hands-on tour of KiCad - Layout 93
1. Introduction to layout design and objective of this section 94
1 - Start Pcbnew, import footprints ??
2 - Outline and constraints (edge cut) ??
3 - Move footprints in place ??
4 - Route (add tracks) ??
5 - Refine the outline ??
6 - Silkscreen (text and graphics) ??

7

7 - Design rules check ??
8 - Export Gerbers and order ??
The manufactured PCB ??

Part 5: Design principles and PCB terms ??
Introduction ??
Schematic symbols ??
PCB key terms ??

FR4 ??
Traces ??
Pads and holes ??
Via ??
Annular ring ??
Soldermask ??
Silkscreen ??
Drill bit and drill hit ??
Surface mounted devices ??
Gold Fingers ??
Keep-out areas ??
Panel ??
Solder paste and paste stencil ??
Pick-and-place ??

Part 6: PCB design workflows ??
The KiCad Schematic Design Workflow ??

Schematic Design Step 1: Setup ??
Schematic Design Step 2: Symbols ??
Schematic Design Step 3: AAA (Arrange, Annotate, Associate) ??
Schematic Design Step 4: Wire ??
Schematic Design Step 5: Nets ??
Schematic Design Step 6: Electrical Rules Check ??
Schematic Design Step 7: Comments and Graphics ??

The KiCad Layout Design Workflow ??
Layout Design Step 1: Setup ??
Layout Design Step 2: Outline and constraints ??
Layout Design Step 3: Place footprints ??
Layout Design Step 4a: Route ??
Layout Design Step 4b: Copper fills ??
Layout Design Step 5: Silkscreen ??
Layout Design Step 6: Design rules check ??

8

Layout Design Step 7: Export & Manufacture ??
Part 7: Fundamental Kicad how-to: Symbols and Eeschema ??

Introduction ??
Left menu bar overview ??
Top menu bar overview ??
Right menu bar overview ??
Schematic editor preferences ??
How to find a symbol with the Chooser ??
How to find schematic symbols on the Internet ??
How to install symbol libraries in bulk ??
How to create a custom symbol ??
How to associate a symbol with a footprint ??
Net labels ??
Net classes ??
Hierarchical sheets ??
Global labels ??
Hierarchical labels and import sheet pin ??
Electrical rules and customization ??
Bulk editing of schematic elements ??

Part 8: Fundamental Kicad how-to: Footprints and Pcbnew ??
Introduction ??
Left toolbar ??
Top toolbar ??

Top toolbar Row 1 ??
Top toolbar Row 2 ??

Right toolbar ??
Right toolbar main buttons ??
Right toolbar - Appearance ??

Layout editor preferences ??
Board Setup ??

Board Setup - Board Stackup ??
Board Setup - Text & Graphics ??
Board Setup - Design Rules and net classes ??
Board Setup - Design Rules - Custom Rules and violation severity ??

How to find and use a footprint ??
Footprint sources on the Internet ??
How to install footprint libraries ??
Filled zones ??

9

Keep-out zones ??
Interactive router ??
Length measuring tools ??
Bulk editing ??
Create a custom footprint, introduction ??

Create a new library and footprint ??
Create a footprint, 1, Fabrication layer ??
Create a footprint, 2, Pads ??
Create a footprint, 3, Courtyard layer ??
Create a footprint, 4, Silkscreen layer ??
Use the new footprint ??

Finding and using a 3D shape for a footprint ??
How to export and test Gerber files ??

Part 9: Project - Design a simple breadboard power supply PCB 96
1. Introduction 97
Schematic design editing ??

1 - Setup ??
2 - Symbols ??
2 - Edit Component values ??
3 - Arrange, Annotate ??
3 - Associate ??
4 - Wiring ??
5 & 6 - Nets and Electrical Rules Check ??
7 - Comments ??

Layout design editing ??
1 - Setup ??
2 - Outline and constraints ??
3 - Place footprints ??
2 - Refine the outline ??
4 - Route ??
5 - Copper fills ??
6 - Silkscreen ??
7 - Design Rules Check ??
8 - Export and Manufacture ??

Part 10: Project - A 4 x 8 x 8 LED matrix array 102
1. Introduction 103
Schematic design ??

1 - Setup

10

Schematic design
Schema 1 - Setup
Schema 2 - Symbols
Schema 3 - Arrange, Annotate
Schema 3 - Associate
Schema 4 - Wiring
Schema 5 - Nets
Schema 6 - Electrical Rules Check
Schema 7 - Comments
Schema - Last-minute edits
Layout design
Layout 1 - Setup
Layout 2 - Outline and constraints
Layout 3 - Place components
Layout 2 supplemental - Refine outline
Layout 3 supplemental - Move footprints to back layer
Layout 4 - Route
Layout 4 - Copper fills
Layout 5 - Silkscreen
Layout 6 - Design Rules Check
Layout 7 - Manufacture
Bonus - 3D shapes
Bonus - Found a bug in the schematic! (and fix)
The assembled and working PCB ??
2 - Symbols ??
3 - Arrange, Annotate ??
3 - Associate ??
4 - Wiring ??
5 - Nets ??
6 - Electrical Rules Check ??
7 - Comments ??
 Last-minute edits ??

Layout design editing ??
1 - Setup ??
2 - Outline and constraints ??
3 - Place components ??
2 - Refine outline ??
3 - Move footprints ??

11

4 - Route ??
4 - Copper fills ??
5 - Silkscreen ??
6 - Design Rules Check ??
7 - Manufacture ??

Bonus - 3D shapes
Bonus - Found a bug in the schematic! (and fix)
Bonus - 3D shapes
Bonus - Found a bug in the schematic! (and fix)
The assembled and working PCBThe assembled and working PCB ??
Bonus - Found a bug in the schematic! (and fix) ??
The assembled and working PCBSchematic design
Schema 1 - Setup
Schema 2 - Symbols
Schema 3 - Arrange, Annotate
Schema 3 - Associate
Schema 4 - Wiring
Schema 5 - Nets
Schema 6 - Electrical Rules Check
Schema 7 - Comments
Schema - Last-minute edits
Layout design
Layout 1 - Setup
Layout 2 - Outline and constraints
Layout 3 - Place components
Layout 2 supplemental - Refine outline
Layout 3 supplemental - Move footprints to back layer
Layout 4 - Route
Layout 4 - Copper fills
Layout 5 - Silkscreen
Layout 6 - Design Rules Check
Layout 7 - Manufacture
Bonus - 3D shapes
Bonus - Found a bug in the schematic! (and fix)
The assembled and working PCB ??

Part 11 : Project - MCU datalogger 108
1. Project - Introduction 109
Create the new project and Git repository ??

12

Schematic design ??
Schema 1 - Setup ??
Schema 2 - Symbols ??
Schema 2 - Sheet two ??
Schema 3 - Arrange, Annotate ??
Edit component values ??
Schema 3 - Associate ??
Schema 4 - Wiring of sheet 1 ??
Schema 4 - Wiring of sheet 2 ??
Schema 5 - Nets ??
Schema 6 - Electrical Rules Check ??
Schema 7 - Comments ??

Create the 2-layer branch in Git ??
Layout design ??

Layout 1 - Setup ??
Layout 2 - Outline and constraints ??
Layout 3 - Place components ??
Layout 2 - Outline refinement ??
Layout 4 - Route ??
Layout 4 - Copper fills ??
Layout 4 - Routing improvements ??
Layout 5 - Silkscreen ??
Layout 4 - Routing violations and complete silkscreen ??
Layout 6 - Design Rules Check ??
Layout 7 - Manufacture ??

3D shapes ??
Merge 2-layer branch to main ??
Design 4 Layer PCB in new Git branch ??
Four-layer PCB routing ??
Four-layer PCB manufacturing ??
Updating layout from changes to the schematic with Git ??

Part 12 : Project - An ESP32 clone ??
1. Project - Introduction 113
Schematic design ??

Schema 1 - New KiCad project and Schematic Setup ??
Schema 2 - Symbols ??
Schema 3 - Annotate and set component values ??
Schema 3 - Arrange ??

13

Schema 3 - Associate ??
Schema 4 - Wiring ??
Schema 5 - Nets and Net Classes ??
Schema 6 - Electrical Rules Check ??
Schema 7 - Comments ??

Layout design ??
Layout 1 - Setup ??
Layout 2 - Outline and constraints ??
Layout 3 - Place components ??
Layout 2 supplemental - refine outline ??
Layout 4 - Route ??
Layout 4 - Copper fills and keep out areas ??
Layout 5 - Silkscreen ??
Layout 4 - Routing improvements ??
Layout 6 - Design Rules Check ??
Layout 7 - Manufacture ??

3D shapes ??
Part 13: Recipies ??

Create a custom silkscreen or copper graphic ??
Change a symbols and footprints in bulk ??

Change a symbol in bulk ??
Change a footprint in bulk ??

Interactive delete ??
Find and Replace (Eeschema) ??
Edit Text & Graphics Properties ??
Edit Track & Via Properties (Pcbnew) ??
Text variables ??
Board Setup - pre-defined sizes for tracks and vias ??
Board Setup - Design rules violation severity ??
Board Setup - Custom design rules ??
Schematic Setup - Electrical Rules and violation severity ??
Schematic Setup - Electrical Rules and Pin conflicts map ??
Field name templates ??
Bill of Materials ??

Build-in BOM in Pcbnew ??
Build-in BOM in Eeschema ??
A plug-in for BOM ??

Import components from Snapeda ??

14

The Freerouting autorouter ??
Install and start FreeRouting on MacOS ??
Install and start FreeRouting on Linux Kubuntu ??
Install and start FreeRouting on Windows ??
How to use the Freerouting autorouter 2-layer example ??
How to use the Freerouting autorouter 4-layer example ??

Pcbnew Inspection menu ??
Single track and differential pair routing ??
Track length tuning ??
Differential pair skew tuning ??
Interactive router modes ??
The footprint wizard ??
Pin and wire highlighter tool ??
Pcbnew Origins ??
KiCad project management with Git ??

Install Git ??
Git configuration ??
Create a new KiCad project Git repository ??
How to ignore files ??
Basic Git commands: add, commit ??
Basic Git commands: branch ??
Basic Git commands: merge ??

Sharing your KiCad project on GitHub ??
Customize the editor color scheme ??
Import an EAGLE, Altium, or Cadstar project ??
The circuit simulator ??

Prepare the circuit for simulation ??
Configure the simulator ??
Simulate ??

Import a KiCad 5 project ??
KiCad project templates ??

Using a system project template ??
Create a user project template ??

Archive/unarchive and share a project ??
Buses ??
Calculate the width of a trace ??
Design a custom schematic sheet ??

15

Detailed Table of Contents
Introduction 29

1. What is a PCB? 30
2. The PCB design process 36
3. Fabrication 41
4. Get KiCad for your operating system 43
5. Example KiCad projects 47

Part 2: Getting started with KiCad 6 56
1. Introduction 57
2. KiCad Project Manager (main window) 58
3. Overview of the individual KiCad apps 64
4. Paths and Libraries 72
5. Create a new project from scratch 76
6. Create a new project from a template 78
7. KiCad 6 on Mac OS, Linux, Windows 82
8. Differences between KiCad 6 and 5 87

Part 3: Project - A hands-on tour of KiCad - Schematic Design 89
1. Introduction to schematic design and objective of this section 90
Design workflows summary ??
The finished KiCad project and directory ??
Start Kicad and create a new project ??
1 - Start Eeschema, setup Sheet ??
2 - Add symbols ??
3 - Arrange, annotate, associate ??
4 - Wiring ??
5 - Nets ??
6 - The Electrical Rules Check ??
7 - Comments with text and graphics ??

Part 4: Project- A hands-on tour of KiCad - Layout 93
1. Introduction to layout design and objective of this section 94
1 - Start Pcbnew, import footprints ??
2 - Outline and constraints (edge cut) ??
3 - Move footprints in place ??
4 - Route (add tracks) ??
5 - Refine the outline ??
6 - Silkscreen (text and graphics) ??

16

7 - Design rules check ??
8 - Export Gerbers and order ??
The manufactured PCB ??

Part 5: Design principles and PCB terms ??
Introduction ??
Schematic symbols ??
PCB key terms ??

FR4 ??
Traces ??
Pads and holes ??
Via ??
Annular ring ??
Soldermask ??
Silkscreen ??
Drill bit and drill hit ??
Surface mounted devices ??
Gold Fingers ??
Keep-out areas ??
Panel ??
Solder paste and paste stencil ??
Pick-and-place ??

Part 6: PCB design workflows ??
The KiCad Schematic Design Workflow ??

Schematic Design Step 1: Setup ??
Schematic Design Step 2: Symbols ??
Schematic Design Step 3: AAA (Arrange, Annotate, Associate) ??
Schematic Design Step 4: Wire ??
Schematic Design Step 5: Nets ??
Schematic Design Step 6: Electrical Rules Check ??
Schematic Design Step 7: Comments and Graphics ??

The KiCad Layout Design Workflow ??
Layout Design Step 1: Setup ??
Layout Design Step 2: Outline and constraints ??
Layout Design Step 3: Place footprints ??
Layout Design Step 4a: Route ??
Layout Design Step 4b: Copper fills ??
Layout Design Step 5: Silkscreen ??
Layout Design Step 6: Design rules check ??

17

Layout Design Step 7: Export & Manufacture ??
Part 7: Fundamental Kicad how-to: Symbols and Eeschema ??

Introduction ??
Left menu bar overview ??
Top menu bar overview ??
Right menu bar overview ??
Schematic editor preferences ??
How to find a symbol with the Chooser ??
How to find schematic symbols on the Internet ??
How to install symbol libraries in bulk ??
How to create a custom symbol ??
How to associate a symbol with a footprint ??
Net labels ??
Net classes ??
Hierarchical sheets ??
Global labels ??
Hierarchical labels and import sheet pin ??
Electrical rules and customization ??
Bulk editing of schematic elements ??

Part 8: Fundamental Kicad how-to: Footprints and Pcbnew ??
Introduction ??
Left toolbar ??
Top toolbar ??

Top toolbar Row 1 ??
Top toolbar Row 2 ??

Right toolbar ??
Right toolbar main buttons ??
Right toolbar - Appearance ??

Layout editor preferences ??
Board Setup ??

Board Setup - Board Stackup ??
Board Setup - Text & Graphics ??
Board Setup - Design Rules and net classes ??
Board Setup - Design Rules - Custom Rules and violation severity ??

How to find and use a footprint ??
Footprint sources on the Internet ??
How to install footprint libraries ??
Filled zones ??

18

Keep-out zones ??
Interactive router ??
Length measuring tools ??
Bulk editing ??
Create a custom footprint, introduction ??

Create a new library and footprint ??
Create a footprint, 1, Fabrication layer ??
Create a footprint, 2, Pads ??
Create a footprint, 3, Courtyard layer ??
Create a footprint, 4, Silkscreen layer ??
Use the new footprint ??

Finding and using a 3D shape for a footprint ??
How to export and test Gerber files ??

Part 9: Project - Design a simple breadboard power supply PCB 96
1. Introduction 97
Schematic design editing ??

1 - Setup ??
2 - Symbols ??
2 - Edit Component values ??
3 - Arrange, Annotate ??
3 - Associate ??
4 - Wiring ??
5 & 6 - Nets and Electrical Rules Check ??
7 - Comments ??

Layout design editing ??
1 - Setup ??
2 - Outline and constraints ??
3 - Place footprints ??
2 - Refine the outline ??
4 - Route ??
5 - Copper fills ??
6 - Silkscreen ??
7 - Design Rules Check ??
8 - Export and Manufacture ??

Part 10: Project - A 4 x 8 x 8 LED matrix array 102
1. Introduction 103
Schematic design ??

1 - Setup

19

Schematic design
Schema 1 - Setup
Schema 2 - Symbols
Schema 3 - Arrange, Annotate
Schema 3 - Associate
Schema 4 - Wiring
Schema 5 - Nets
Schema 6 - Electrical Rules Check
Schema 7 - Comments
Schema - Last-minute edits
Layout design
Layout 1 - Setup
Layout 2 - Outline and constraints
Layout 3 - Place components
Layout 2 supplemental - Refine outline
Layout 3 supplemental - Move footprints to back layer
Layout 4 - Route
Layout 4 - Copper fills
Layout 5 - Silkscreen
Layout 6 - Design Rules Check
Layout 7 - Manufacture
Bonus - 3D shapes
Bonus - Found a bug in the schematic! (and fix)
The assembled and working PCB ??
2 - Symbols ??
3 - Arrange, Annotate ??
3 - Associate ??
4 - Wiring ??
5 - Nets ??
6 - Electrical Rules Check ??
7 - Comments ??
 Last-minute edits ??

Layout design editing ??
1 - Setup ??
2 - Outline and constraints ??
3 - Place components ??
2 - Refine outline ??
3 - Move footprints ??

20

4 - Route ??
4 - Copper fills ??
5 - Silkscreen ??
6 - Design Rules Check ??
7 - Manufacture ??

Bonus - 3D shapes
Bonus - Found a bug in the schematic! (and fix)
Bonus - 3D shapes
Bonus - Found a bug in the schematic! (and fix)
The assembled and working PCBThe assembled and working PCB ??
Bonus - Found a bug in the schematic! (and fix) ??
The assembled and working PCBSchematic design
Schema 1 - Setup
Schema 2 - Symbols
Schema 3 - Arrange, Annotate
Schema 3 - Associate
Schema 4 - Wiring
Schema 5 - Nets
Schema 6 - Electrical Rules Check
Schema 7 - Comments
Schema - Last-minute edits
Layout design
Layout 1 - Setup
Layout 2 - Outline and constraints
Layout 3 - Place components
Layout 2 supplemental - Refine outline
Layout 3 supplemental - Move footprints to back layer
Layout 4 - Route
Layout 4 - Copper fills
Layout 5 - Silkscreen
Layout 6 - Design Rules Check
Layout 7 - Manufacture
Bonus - 3D shapes
Bonus - Found a bug in the schematic! (and fix)
The assembled and working PCB ??

Part 11 : Project - MCU datalogger 108
1. Project - Introduction 109
Create the new project and Git repository ??

21

Schematic design ??
Schema 1 - Setup ??
Schema 2 - Symbols ??
Schema 2 - Sheet two ??
Schema 3 - Arrange, Annotate ??
Edit component values ??
Schema 3 - Associate ??
Schema 4 - Wiring of sheet 1 ??
Schema 4 - Wiring of sheet 2 ??
Schema 5 - Nets ??
Schema 6 - Electrical Rules Check ??
Schema 7 - Comments ??

Create the 2-layer branch in Git ??
Layout design ??

Layout 1 - Setup ??
Layout 2 - Outline and constraints ??
Layout 3 - Place components ??
Layout 2 - Outline refinement ??
Layout 4 - Route ??
Layout 4 - Copper fills ??
Layout 4 - Routing improvements ??
Layout 5 - Silkscreen ??
Layout 4 - Routing violations and complete silkscreen ??
Layout 6 - Design Rules Check ??
Layout 7 - Manufacture ??

3D shapes ??
Merge 2-layer branch to main ??
Design 4 Layer PCB in new Git branch ??
Four-layer PCB routing ??
Four-layer PCB manufacturing ??
Updating layout from changes to the schematic with Git ??

Part 12 : Project - An ESP32 clone ??
1. Project - Introduction 113
Schematic design ??

Schema 1 - New KiCad project and Schematic Setup ??
Schema 2 - Symbols ??
Schema 3 - Annotate and set component values ??
Schema 3 - Arrange ??

22

Schema 3 - Associate ??
Schema 4 - Wiring ??
Schema 5 - Nets and Net Classes ??
Schema 6 - Electrical Rules Check ??
Schema 7 - Comments ??

Layout design ??
Layout 1 - Setup ??
Layout 2 - Outline and constraints ??
Layout 3 - Place components ??
Layout 2 supplemental - refine outline ??
Layout 4 - Route ??
Layout 4 - Copper fills and keep out areas ??
Layout 5 - Silkscreen ??
Layout 4 - Routing improvements ??
Layout 6 - Design Rules Check ??
Layout 7 - Manufacture ??

3D shapes ??
Part 13: Recipies ??

Create a custom silkscreen or copper graphic ??
Change a symbols and footprints in bulk ??

Change a symbol in bulk ??
Change a footprint in bulk ??

Interactive delete ??
Find and Replace (Eeschema) ??
Edit Text & Graphics Properties ??
Edit Track & Via Properties (Pcbnew) ??
Text variables ??
Board Setup - pre-defined sizes for tracks and vias ??
Board Setup - Design rules violation severity ??
Board Setup - Custom design rules ??
Schematic Setup - Electrical Rules and violation severity ??
Schematic Setup - Electrical Rules and Pin conflicts map ??
Field name templates ??
Bill of Materials ??

Build-in BOM in Pcbnew ??
Build-in BOM in Eeschema ??
A plug-in for BOM ??

Import components from Snapeda ??

23

The Freerouting autorouter ??
Install and start FreeRouting on MacOS ??
Install and start FreeRouting on Linux Kubuntu ??
Install and start FreeRouting on Windows ??
How to use the Freerouting autorouter 2-layer example ??
How to use the Freerouting autorouter 4-layer example ??

Pcbnew Inspection menu ??
Single track and differential pair routing ??
Track length tuning ??
Differential pair skew tuning ??
Interactive router modes ??
The footprint wizard ??
Pin and wire highlighter tool ??
Pcbnew Origins ??
KiCad project management with Git ??

Install Git ??
Git configuration ??
Create a new KiCad project Git repository ??
How to ignore files ??
Basic Git commands: add, commit ??
Basic Git commands: branch ??
Basic Git commands: merge ??

Sharing your KiCad project on GitHub ??
Customize the editor color scheme ??
Import an EAGLE, Altium, or Cadstar project ??
The circuit simulator ??

Prepare the circuit for simulation ??
Configure the simulator ??
Simulate ??

Import a KiCad 5 project ??
KiCad project templates ??

Using a system project template ??
Create a user project template ??

Archive/unarchive and share a project ??
Buses ??
Calculate the width of a trace ??
Design a custom schematic sheet ??

24

An introduction: Why KiCad?

Since KiCad first appeared in the PCB CAD world in 1992, it has gone
through 6 major versions and evolved into a serious alternative to commercial
products. I have been using KiCad almost daily since version 4 when I
published the first edition of KiCad Like a Pro.

Once thought clunky and barely usable, it is now a solid, reliable CAD
application. KiCad has been consistently closing the feature and performance
gap against its commercial competitors. It has made leaps in adding powerful
features and has significantly improved its stability.

Combined with the benefits of free and open-source software, I believe
that KiCad is simply the best PCB CAD software for most use cases.

One of those benefits is KiCad's very active and growing community of
users and contributors. KiCad has a dedicated developer team, supported by
contributing organizations like CERN, the Raspberry Pi Foundation, Arduino
LLC, and Digi-Key Electronics. The community is also active in contributing
funds to cover development costs. Since joining the Linux Foundation, the
KiCad project has received around $90,000 in donations. The project used this
money to buy development time and funding developer conference travel and
meetups. To a large extent, this alone guarantees that KiCad's development
will accelerate and continue to in the future.

Supporting the KiCad core team is the KiCad community. The
community consists of over 250 thousand people worldwide that have
downloaded a copy. These people support the KiCad project in various ways:
they write code, create and share libraries, and help others learn. They write
documentation, record videos, report bugs, and share hacks. During the
KiCad 6 development cycle, the KiCad repository had around 14600 commits
from the community. Based on this number, KiCad 6 is the most significant
KiCad version ever in terms of changes.

Another signal of the strength of the KiCad community is that KiCad 6
includes completed or nearly completed translations to nearly 20 languages.
No other CAD software that I am aware of can boast this.

PCB manufacturers have also taken notice. Many of them now publish
Kicad-specific tutorials, explaining how to order your boards. Some have
made it possible to upload the KiCad native layout file from your project
instead of generating multiple Gerber files.

And finally, KiCad is part of an expanding CAD ecosystem. You will
find KiCad-compatible component libraries on the Internet's major

25

repositories, such as Snapeda and Octopart, as well as native support in PCB
project version control software for teams, such as CADLAB.io.

KiCad's development and prospects have never been brighter than now.
KiCad's roadmap has exciting new features and capabilities such as grouping
board objects into reusable snippets and a stable Python API.

Why do I use KiCad? Because it is the perfect PCB software for my use
case.

I am an electrical engineer with a background in electronics and
computer engineering. But, above all, I am a technology educator and
electronics hobbyist. The majority of my PCB projects eventually find
themselves in my books and courses. My projects are very similar to those of
other hobbyists in terms of complexity and size. I make things for my Arduino
and Raspberry Pi courses. As a hobbyist, KiCad proved to be the perfect tool
for me.

Your use case may be different. You may be a university student
completing an engineering degree. You may be a hobbyist or solo developer
working in a startup company. You may be part of a team working on
commercial projects that involve highly integrated multi-layer PCBs.

To help you decide whether KiCad is right for you, I have compiled a
list of 12 KiCad Benefits. This list contained ten items in the second edition of
the book. I added the last two items to highlight additional benefits brought
about with KiCad 6.

Here they are:
Benefit 1: KiCad is open source. This is very important, especially as I

spend more time creating new and more complicated boards. Open source, by
definition, means that the code base of the application is available for anyone
to download and compile on their computer. It is why Linux, Apache, and
WordPress essentially run the Internet (all of them open-source). While I am
not extreme in my choices between open source and closed source software,
whenever a no-brainer open-source option does appear, like KiCad, I take it.

Benefit 2: It is free! This is particularly important for hobbyists. CAD
tools can be expensive. This is worsening with most CAD software companies
switching to a subscription-based revenue model. When you are a hobbyist or
student or bootstrapping for a startup, regular fees do add up. Not to mention
that most of us would not be using even half of the features of commercial
CAD software. It is hard to justify spending hundreds of dollars on PCB
software when there is KiCad. This brings me to Benefit 3

26

Benefit 3: KiCad is unlimited. There are no ''standard'', ''premium'' and
''platinum'' versions to choose from. It's a single download, and you get
everything. While there are commercial PCB tools with free licensing for
students or hobbyists, there are always restrictions on things like how many
layers and how big your board can be, what you can do with your board once
you have it, who can manufacture your board, and much more. And there is
always the risk that the vendor may change the deal in the future where you
may have to pay a fee to access your projects. I'll say again: KiCad is
unlimited and forever! This is so important that I choose to pay a yearly
donation to CERN that is higher than the cost of an Autodesk Eagle license to
do my part in helping to maintain this.

Benefit 4: KiCad has awesome features. Features such as interactive
routing, length matching, multi-sheet schematics, configurable rules checker,
and differential routing are professional-grade. While you may not need to
use some of them right away, you will use them eventually. You can add new
features through third-party add-ons. The external autorouter is one example.
The ability to automate workflows and extend capabilities through Python
scripts is another.

Benefit 5: KiCad is continually improved. Especially since CERN &
Society Foundation became involved in their current capacity, I have seen a
very aggressive and successfully implemented roadmap. When I wrote the
first version of this list (August 2018), KiCad 5 was about one month old. The
funding for KiCad 6 was already complete, and the road map living document
was published. Three years later, KiCad 6 was delivered with promises
fulfilled. Now, with KiCad 6 published, the road map for the future looks just
as exciting.

Benefit 6: KiCad's clear separation of schematics and layout is a bonus
to learning and using it. Users of other PCB applications often find this
confusing, but I believe that it is an advantage. Schematic design and layout
design are indeed two different things. Schematic symbols can be associated
with different footprints that depend on the project requirements. You can use
the schematic editor independently of the layout editor or in sync. I often
create schematic diagrams for my courses that I have no intention of
converting into PCBs. I also often create multiple versions of a board using the
same schematic. This separation of roles makes both scenarios easy.

Benefit 7: I can make my boards anywhere: I can upload my project to
any online fabricator that accepts the industry-standard Gerber files; I can

27

upload it to an increasing number of fabricators that accept the native KiCad
layout file; and, of course, I can make them at home using an etching kit.

Benefit 8: KiCad works anywhere. Whether you are a Mac, Windows, or
Linux person, you can use KiCad. I use it on all three platforms. I can take my
KiCad 6 project from the Mac and continue working on Windows 10 without
worrying about any software or project files glitches.

Benefit 9: KiCad is very configurable. You can assign your favorite
keyboard hotkeys and mapping, and together with the mouse customizations,
you can fully adapt it to your preferences. With the additions of the plugin
system and the Python API, , it will be possible to extend your instance of
KiCad with the exact features you need (or write them).

Benefit 10: If you are interested in creating analog circuits, you will be
happy to know that KiCad ships with SPICE. You can draw the schematic in
Eeschema and then simulate it in SPICE without leaving KiCad. This
integration first appeared in KiCad 5, and it is now a stable feature.

Benefit 11: In the past, KiCad's release cycle was somewhat chaotic.
New major versions would come out every two or three years, but no one
knew ahead of time. In the future, KiCad will operate in a yearly release cycle.
This is good for two reasons: One, commercial users who can now better
predict how the software they depend on will change and when. Two, as
KiCad users, all of us will be able to expect a reliable development schedule
that prioritizes reliability. KiCad is now mature enough to be able to evolve
predictably.

Benefit 12: KiCad is now a serious productivity tool for businesses. If
you are an electronics engineer, you can proudly list it in your resume. If you
are using it in your business, you can contract the KiCad Services
Corporation, to customize the software to your exact requirements. I am
talking about deep customization, not just changing the theme and the menu
bars. This means that KiCad can fit precisely with your business. As far as I
know, no commercial CAD application can do that. For the non-business users
among us, we can expect many of these business-led improvements to flow
into future software versions in the tradition of open-source software.

These are the twelve most important reasons I have chosen KiCad as
my tool of choice for designing PCBs. These reasons might not be suitable for
you, but I hope you will consider reading this book first before making your
own decision.

Over the last seven years, I have packed almost everything I have
learned as a KiCad user in this book. I have organized it in a way that will

28

make learning KiCad quick. The objective of this book is to make you
productive by the time you complete the first project, in part four.

If you come from another PCB CAD tool and have experience designing
PCBs, I only ask that you have an open mind. KiCad is most certainly very
different from your current PCB tool. It looks different, and it behaves
differently. It will be easier to learn it if you consciously put aside your
expectations and look at KiCad like a beginner would. As per the Borg in Star
Trek, ''resistance is futile”, and in learning, like in so many other aspects of
life, you are better off if you go with the flow.

Let's begin!

29

Introduction

30

1. What is a PCB?
As a child, I remember that my interest in electronics grew from

admiration of what these smart engineers had come up with to curiosity about
how these things worked. This curiosity led me to use an old screwdriver that
my dad had left in a drawer (probably after fixing the hinges on a door) to
open anything electronic with a screw large enough for the screwdriver to fit
in.

A record player, a VCR, a radio; all became my "victims." I am still
amazed that a charged capacitor didn't electrocute me. At least, I had the good
sense to unplug the appliances from the mains. Inside those devices, I found
all sorts of wondrous things: resistors, transformers, integrated circuits, coils,
and power supplies.

Engineers had attached those things on small green boards, like the one
in Figure 1.1.1. This is an example of a printed circuit board, or PCB, for short.

Figure 1.1.1: The top side of a printed circuit board.

Let's look at the components of a PCB, what a PCB looks like, and the
terminology that we use. The example PCB is one I made for one of my
courses (Figure 1.1.1).

The top side of the PCB is the side where we place the components. We
can place components on the bottom side, too.

In general, there are two kinds of components: through-hole or surface-
mounted components. We can attach through-hole components on the PCB by
inserting the leads or the pins through small holes and using hot solder to
hold them in place. In the example pictured in Figure 1.1.1, you can see

31

several holes to insert the through-hole component pins. The holes extend
from the top side to the bottom side of the PCB and are plated with a
conductive material. This material is usually tin, or as in the case of the board
in the image, gold. We use solder to attach and secure a component through
its lead onto the pad surrounding the hole (Figure 1.1.2).

Figure 1.1.2: A through-hole component attached to a PCB.

If you wish to attach a surface-mounted component, then instead of
holes, you attach the component onto the surface of the PCB using tin-plated
pads. You will use just enough solder to create a solid connection between the
flat connector of the component and the flat pad on the PCB (Figure 1.1.3).

Figure 1.1.3: A surface-mounted component attached to a PCB.

Next is the silkscreen. We use the silkscreen for adding text and
graphics. The text can provide helpful information about the board and its
components. The graphics can include logos, other decorations, and useful
markings.

32

Figure 1.1.4: The white letters and lines is the silkscreen print on this PCB.

In Figure 1.1.4, you can see here that I've used white boxes to indicate
the location of various components. I've used text to indicate the names of the
various pins, and I've got version numbers up there. It's a good habit to have a
name for the PCB and things of that sort. Silkscreen goes on the top or the
bottom of the PCB.

Sometimes, you may want to secure your PCB onto a surface. To do
that, you can add a mounting hole. Mounting holes are similar to the other
holes in this board, except they don't need to be tinned. You can use a screw
with a nut and bolt on the other side to secure the PCB inside a box.

Next are the tracks. In this example (Figure 1.1.5), they look red because
of the color of the masking chemical used by the manufacturer.

Figure 1.1.5: The bright red lines connecting the holes are tracks.

Tracks are made of copper, and they electrically connect pins or
different parts of the board. You can control the thickness of a track in your
design. You can also refer to a "track" as a "trace."

Notice the small holes that have no pad around them? These are called
'vias.' A via looks like a hole but is not used to mount a component. A via is
used to allow a track to continue its route in a different layer. If you're using
PCBs with two or more layers, you can use vias to connect a track from any
one of the layers to any of the other layers. Vias are handy for routing your
tracks around the PCB.

33

The red substance that you see on the PCB is the solder mask. It does a
couple of things. It prevents the copper on the PCB from being oxidized over
time. The oxidization of the copper tracks negatively affects their conductivity.
The solder mask prevents oxidization.

Another thing that the solder mask does is to make it easier to solder by
hand. Because pads can be very close to each other, soldering would be
complicated without the solder mask. The solder mask prevents hot solder
from creating bridges between pads because it prevents it from sticking on the
board (Figure 1.1.6). The solder mask prevents bridges because the solder
cannot bond with it.

Figure 1.1.6: A solder bridge like this one is a defect that a solder mask can prevent.

Often, the tip of the solder, the soldering iron, is almost as big or
sometimes as bigger than the width of the pads, so creating bridges in those
circumstances is very easy, and a solder mask helps in preventing that from
happening.

In Figure 1.1.7 you can see an example of the standard 1.6mm thick
PCB.

Figure 1.1.7: This PCB has a thickness of 1.6mm, and is made of fiberglass.

Typically, PCBs are made of fiberglass. The typical thickness of the PCB
is 1.6 millimeters. In this closeup view of a PCB picture (Figure 1.1.8), you can
see the holes for the through-hole components. The holes for the through-hole
components are the larger ones along the edge of the PCB. Notice that they are
tined on the inside, electrically connecting the front and back.

34

Figure 1.1.8: A closeup view of the top layer.

In Figure 1.1.8, you can see several vias (the small holes) and tracks, the
red solder mask, and the solder mask between the pads. In this closeup, you
can also see the detail of the silkscreens. The white ink is what you use in the
silkscreen to create the text and graphics.

Figure 1.1.9 is interesting because it shows you a way to connect
grounds and VCC pads to large areas of copper, which is called the copper fill.

Figure 1.1.9: Thermal relief connects a pad to a copper region.

In Figure 1.1.9, the arrow points to a short segment of copper that
connects the pad to a large area of copper around it. We refer to this short
segment of copper as a 'thermal relief.' Thermal reliefs make it easier to solder
because the soldering heat won't dissipate into the large copper area.

Figure 1.1.10 gives a different perspective that allows us to appreciate
the thickness of the tracks.

Figure 1.1.10: The plating of the holes covers the inside of the hole and connects that front end with
the back end.

35

Notice the short track that connects the two reset holes (RST)? The light
that reflects off the side of the track gives you an idea of the thickness of that
copper, which is covered by the purple solder mask.

In this picture, you can also see a very thin layer of gold that covers the
hole and the pad and fills the inside of the hole. This is how you electrically
have both sides of the hole connected.

Instead of gold plating, you can also use tin plating to reduce
manufacturing costs.

Figure 1.1.11: A detail of this example board at 200 times magnification.

The image in Figure 1.1.11 was taken at 200 times magnification. You
can see a track that connects two pads and the light that reflects off one side of
the track.

36

2. The PCB design process
To design a printed circuit board, you have to complete several steps,

make decisions, and iterate until you are satisfied with the result.
A printed circuit board is a physical device that takes time and money

to manufacture. It must be fit to perform its intended purpose, and must be
manufacturable. Therefore, your design must be of high quality, safe, and
possible to manufacture by your chosen manufacturer.

Apart from the practical considerations of designing a PCB, there are
also the aesthetic ones. You want your work to look good, not just to function
well. Designing a PCB, apart from being an engineering discipline, is also a
form of art.

Figure 1.2.1: Some considerations of the PCB design process.

In this book, you will learn about the technical elements of designing a
PCB in KiCad, but I am sure that as you start creating your PCBs, your artistic
side will emerge. Over time, your PCB will start to look uniquely yours.

PCB design is concerned with the process of creating the plans for a
printed circuit board. It is different from PCB manufacturing. In PCB design,
you learn about the tools, process, and guidelines useful for creating such
plans.

In PCB manufacturing, on the other hand, you are concerned about the
process of converting the plans of a PCB into the actual PCB.

37

As a designer of printed circuit boards, it is useful to know a few things
about PCB manufacturing, though you surely do not need to be an expert. You
need to know about the capabilities of a PCB manufacturing facility so that
you can ensure that your design does not exceed those capabilities and that
your PCBs are manufacturable.

As a designer, you need to have an understanding of the design
process, and the design tools. To want to design PCB, I assume that you
already have a working knowledge of electronics. Designing a PCB, like much
else in engineering, is a procedural and iterative process that contains a
significant element of personal choice. As you build up your experience and
skills, you will develop your unique designing style and process.

Figure 1.2.2: KiCad is a suite of applications.

KiCad is not a single application. It is a suite of apps that work together
to help you create printed circuit boards. As a result, it is possible to customise
the PCB design process to suit your particular style and habits.But when you
are just starting up, I think it is helpful to provide a workflow that you can use
as a model.

In Figure 1.2.2 you can see my KiCad PCB design workflow model. You
can use it as it is, or you can modify as you see fit. I distilled this workflow by
drawing from my own experience and learning from other people’s best
practices. I also tried to simplify this process and make it suitable for people
new to PCB design.

In this book, I will be following this PCB design workflow in all of the
projects.

From a very high-level perspective, the PCB design workflow only has
two major steps:

38

1. Step 1 is the schematic design using the schematic design editor
(Eeschema);

2. Step 2 is the layout design using the layout editor (Pcbnew).
Once you have the layout design, you can export it and the

manufacture it.
The goal of the schematic design step is to capture information about

the circuit that will be implemented in the final PCB. Once you have a
schematic design, you can use the layout editor to create a version of the PCB.
Remember, a schematic design can have many different layouts.

Figure 1.2.3: The KiCad layout file contains information about the physical PCB.

The KiCad layout file contains information about your board, which the
manufacturer can use to create the board. The layout must contain
information about the size and shape of the board; its construction (such as
how many layers it must have); the location of the components on the board,
the location of various board elements, like pads, holes, traces and cutouts; the
features of these elements (such as the sizes of holes and traces); and much
more (which you will learn in detail later in this book).

Let’s walk through through the workflow now using the diagram in Figure
1.2.3 as an aid.

For the discussion that follows, keep in mind these definitions:
• A symbol is a symbolic representation of a real component in the

schematic; a symbol represents a component's function, not its physical
appearance or location in the final PCB.

39

• A footprint is a graphical depiction of a real component in the layout. It
relates directly to a real physical counterpart. It contains information
about the real component’s location and dimensions.

In this book, I will be using the terms “symbols” and footprints according to
the definitions above.

In KiCad, the process begins with Eeschema, which is the schematic editor.
In Eeschema you create the electrical schematic that describes the circuit

that eventually will be manufactured into the PCB. You draw the schematic by
selecting symbols from the library and adding them to the schematic sheet. If
a component that you need doesn’t exist in the library, you can search for it on
the Internet, or create yourself with the help of the schematic library editor.

Running regular electrical rules checks helps to detect defects early.
Eeschema has a built-in checker utility for this purpose.

Pcbnew (KiCad's layout editor) has its own validator, the Design Rules
Checker.

These two utilities help to produce PCBs that have a low risk to contain
design or electrical defects.

Before you finish work in Eeschema and continue with the layout, you
must first associate the schematic symbols with layout footprints.

In KiCad 6, many symbols come with preset symbol to footprint
associations, but many don't, so you'll have to do this yourself. Also keep in
mind that, as I said earlier, KiCad is very flexible. It is possible to assign many
different footprints to the same schematic symbol (one at a time, of course).

Once you have completed the Electrical Rules Check and symbol to
footprint associations, you can continue with layout using the KiCad Layout
design editor, or Pcbnew.

You use Pcbnew to position the footprints on the sheet and connect the
footprint pins using wires. You'll also add an outline that marks the outer
limit of the PCB, and other design elements like mounting holes, logos, and
instructional text.

Once you have your PCB laid out and have its traces completed, you can
go ahead and do the design rules check. This check looks for defects in the
board, such as a trace that is too close to a pad or two footprints overlapping.

Let's look at some of the PCB terminology before we continue.

40

Figure 1.2.4: Symbols and footprints.

As you know, a symbol is a symbolic representation of a real component in
the schematic. A footprint is a graphical depiction of a real component in the
layout.

You, as the designer, must tell KiCad which footprint you want to use in
your PCB by associating it to a particular symbol. Take the example of a
resistor. A resistor uses a specific symbol in the schematic, but on the PCB it
can be realized as a through-hole or SMD device of varying sizes.

When you are finished working on the layout, you can continue with the
last step which involves exporting the layout information in a format that is
compatible with your board manufacturer’s requirement.

The industry standard for this is a format called ‘Gerber.’ Gerber files
contain several related files, with one Gerber file per layer on your PCB, and
contain instructions that the fabrication house needs to manufacture your
PCB.

Let’s move on to the next chapter where we’ll talk about fabrication.

41

3. Fabrication
Imagine that you have finished laying out your board in KiCad, and

you’re ready to make it. What are your options? One option is to make your
PCBs at home. There’s a guide available on the Fritzing website.

The process described in the Fritzing guide is called etching. It involves
the use of various chemicals in chemical baths. Some of these chemicals are
toxic. You have to have special safety equipment and keep your children and
pets away. The process emits smelly and potentially dangerous fumes. Once
you have your board etched, you still need to use a drill to make holes and
vias and then figure out how to connect your top and bottom layers.

If this sounds like not your kind of thing (I’m with you!), then you can
opt for a professional PCB manufacturer service. PCBWay, NextPCB, and OSH
Park are very good at what they offer.

You can get a professionally made PCB for around $15 for several
copies and without danger to yourself as well. I’ve used OSHPark (great for
beginners thanks to its straightforward user interface) and PCBWay (great for
more advanced projects that need an extensive array of manufacturing
options) extensively. I’m always happy with the result. Using an online
manufacturer takes a little bit of planning because once you order your PCBs,
it can take up to several weeks to be delivered. If you’re in a hurry, there are
options to expedite the process if you are willing to pay a premium.

The typical small standard two-layer order costs around $10 for a two
square inch board; you get three copies of that. This price works out to around
$5 per square inch. The pricing is consistent in the industry, where the main
cost factor is the size of the PCB. There is a strong incentive to make your
PCBs as small as possible. Be aware of this when you design your layout.

42

Figure 3.3.1: An example of the Gerber files that the manufacturer will need in order to make your
PCB.

Now, let’s turn our attention to the files you need to upload for these
services — and the files are Gerber files. Each layer on your PCB has its own
Gerber file, which is simply a text file. Figure 3.3.2 shows the contents of an
example Gerber file.

Figure 3.3.3: Gerber files contain text

You can see that this is just a text-based file that contains instructions.
An advantage of this text format is that you can use a version control system
like Git to maintain your project history and store and share via online
repositories like Github.

Ucamco has designed the Gerber files system and standard. They make
equipment and write software for PCB manufacturers — things like PreCAM
software, PCB CAM, laser photoplotters, and direct imaging systems. If you’re
curious about how to read these Gerber files, you can look up the Gerber
format specification on Ucamco’s website.

43

4. Get KiCad for your operating system
It is now time to download your copy of KiCad and install it on your

computer.
Kicad has support for a variety of operating systems. The major

operating systems, Mac OS and Windows, are supported. Of course, there is
support for Ubuntu and a lot of different flavors of Linux. I have tested, and I
frequently use KiCad on Mac OS. Mac OS is my primary operating system,
but I'm also working on Windows and Kubuntu instead of Ubuntu.

Kubuntu is based on Ubuntu in its core but uses the KDE Desktop and
related software. I find Kubuntu to offer a much better experience compared
to Ubuntu. Of course, this is my personal preference, and opinions vary
greatly.

I'm not going to show you how to install KiCad on each one of those
operating systems. The KiCad developer team has refined the installer over
the years. The KiCad installation process on the supported operating systems
is just like that of any other refined application.

Figure 1.4.1: Windows stable release download page.

For example, to get the KiCad installer for Windows, go to the KiCad
Windows page and download the stable version of KiCad from your preferred
source. Double-click on the installer icon and follow the installation wizard
instructions to complete the installation on your computer.

44

Figure 1.4.2: Nightly build download

You can download and install the latest available version of KiCad that
is available as a nightly build. Nightly builds are work-in-progress. They
contain the latest code committed by the KiCad developers but are considered
"unstable." Therefore, you should not use it for work that you do not want to
lose. The major operating systems have a nightly build generated (almost)
every night. If you want to look at the cutting-edge version of KiCad and you
are not afraid of weird behaviors and strange crashes, then go to the nightly
releases page for your preferred operating system and download the installer.
Example: Windows.

45

Figure 1.4.3: Nightly build download

If you're working on Mac OS, go to the Mac OS downloads page and
download the latest available stable release. You can also download a nightly
build if you are comfortable with the inherent risk. Both stable and nightly
builds come as a regular DMG file. The download file contains the entire
KiCad suite with all its applications, the documentation, and the libraries for
the schematic symbols, footprints, and templates. It also includes several
demos projects.

The installation process makes use of Ubuntu's apt-get system. For
Ubuntu, you can find installations instructions on the Ubuntu page. For using
nightly development builds in Ubuntu, you will find instructions on the same
page.

There is there are similar instructions for the various other operating
systems like Suse and Fedora.

You also have the option to download the source code and build from
the source on your operating system. This is not something that I usually do
unless I want to play around with it and experiment. Luckily, the operating
systems I use or have excellent binary builds, so I never needed to build my
KiCad instance from the source. But if you are someone who enjoys doing
that, then go to the source code page and follow the detailed instructions.

At this point, I invite you to download the version of KiCad that is
suitable for your operating system and install KiCad on your computer. Once
you finish installing KiCad, verify that it's up and running by starting KiCad.

46

In the next chapter, you will use your brand new instance of KiCad to
look at some of the demo projects that ship with KiCad.

47

5. Example KiCad projects
Now that you have installed your instance of KiCad let's start your

familiarisation with it by looking at one of the examples that come with it.
Browse to the KiCad demos folder, and download the one titled
'pic_programmer' (Figure 1.5.1). You can also download the entire “demos”
folder if you wish.

Figure 1.5.1: The contents of the 'pic_programmer' demo project folder.

The demo project folder contains several files that make up the project.
For now, the ones to focus on have the extensions' kicad_pro,' 'kicad_pcb' and
'kicad_sch.' The file with the 'kicad_pro' extension contains project
information. The 'kicad_pcb' file contains layout information. The files with
the 'kicad_sch' extension contain schematic information. There are two
'kicad_sch' files because this project includes two schematics.

Double-click on the 'kicad_pro' (project) file. The main KiCad window
will appear. This window is the launchpad for the other KiCad apps, like
Eeschema (the schematic editor) and Pcbnew (the layout editor). You can see
the main KiCad window in Figure 1.5.2.

48

Figure 1.5.2: The main KiCad window.

Let's explore the schematic of this demo project. The main KiCad
window shows the project files in the left pane, the various app buttons in the
top-right pane, and various status messages in the bottom right pane. In the
right pane, click on the Schematic Editor button. This button will start the
Eeschema application, the schematic layout editor. You should see the editor
as in the example in Figure 1.5.3.

Figure 1.5.3: The schematic editor.

49

A few things are going on here. At first, this window might seem
overwhelming. Don't worry about the various buttons and menus;
concentrate on the schematic itself. Look at the various symbols, like those for
the diodes, the transistors, and the operational amplifiers. There are symbols
for resistors, and connectors, with green lines connecting their pins. Notice
how text labels give names to the symbols but also the wirings between pins.
Notice how even the mounting holes at the bottom right side of the schematic
have names. Even though these mounting holes are not electrically active,
they are depicted in the schematic. The values of the capacitors and resistors
are noted, and any pins that are not connected to other pins are marked with
an 'x's.

There is a rectangular symbol on the right side of the schematic with the
title 'pic_sockets' (Figure 1.5.4).

Double click on it. What happened?

Figure 1.5.4: A link to another sheet.

This symbol links to another sheet, which contains additional symbols
that are part of the same schematic. It looks like the example in Figure 1.5.5.

50

Figure 1.5.5: KiCad’s schematics can span over multiple sheets.

KiCad's schematics can span over multiple sheets. Add more if your
schematic is too large to fit in one sheet comfortably (you will learn how to do
this in this book).

I encourage you to spend a bit of time studying this schematic. You can
learn a lot about drawing good schematic diagrams by studying good
schematic diagrams, just like you can learn programming by studying good
open-source code.

Go back to the main KiCad window. Click on the button labeled "PCB
Editor." This will launch Pcbnew, the layout editor. The window that appears
will look like the example in Figure 1.5.6.

51

Figure 1.1.5.6: Pcbnew, the layout editor.

Again, don't worry about the various buttons and menus; concentrate
on the layout inside the sheet. Use your mouse's scroll wheel to zoom in and
out and the Alt+right mouse button to pan (you should also be able to pan by
holding down the middle mouse button). Zoom in and look at some of the
layout details, such as the pads, how they are connected to traces, the names
that appear on the pads and traces, and the colors of the front copper and back
copper layer traces. Note: in Linux, panning is done with the middle mouse
button, and the alt key is not used.

Also, compare how a footprint in the layout compares to the symbol in
the schematic. You can see a side-by-side comparison in Figure 1.5.7.

Figure 1.5.7: A side-by-side comparison of a footprint (left) and its schematic symbol (right).

52

Associated symbols and footprints have the same designator (J1, in this
example) and the same number of pins. The layout shows the traces that
correspond to the wires in the schematic.

Everything you see here is configurable: the width of the traces, which
layer they belong to, the shape, size, and configuration of the pads. You will
learn all of this in this book. In the layout, zoom in on the J1 connector to see
one of its details: the name of the trace that connects pad 7 of J1 to pad 1 of R5.
Traces, like everything else in KiCad, have names. The names of everything
that you see in Pcbnew are defined (manually or automatically) in Eeschema.

Figure 1.5.8: Traces have names.

Try one more thing: In Pcbnew, click on the View menu and choose the
3D Viewer. The 3D Viewer will show you a three-dimensional rendering of the
PCB, with remarkable detail. You can zoom in and turn the board around to
see it from any angle you want (Figure 1.5.9). Many components are
populated, like the LED, resistors, and some of the integrated circuits. For the
rest, you can still see their pads and outlines on the board.

53

Figure 1.5.9: The 3D viewer will give you a realistic rendering of your board that you can examine in
3D.

As with the schematic editor, I encourage you to spend a bit of time
studying the layout of this demo project. Later in this book, you will learn
about the most important layout guidelines that will help you design well-
functioning and elegant PCBs.

Apart from the demo projects that KiCad ships with, you should also
look at some of the very impressive showcased projects of boards “made with
KiCad”. For example, the CSEduino is a 2-layer PCB that contains an
Atmega328P microcontroller and implements a simple Arduino clone. You
will be able to easily create a board like this by the time you finish this book.
Go to txplo.re/madewkicad for more examples of projects made with KiCad.

54

Figure 1.5.10: Featured board 'Made with KiCad': CSEduino.

Another featured board is Anavi Light, a HAT board for the Raspberry
Pi. This is also a 2-layer board that allows you to control a 12V LED strip and
get readings from sensors.

Figure 1.5.11: Featured board 'Made with KiCad': Anavi Light.

Finally, a truly impressive board made with KiCad is Crazyflie (Figure
1.5.12). Crazyflie is a dense 4-layer PCB with a rather elaborate shape. The
board implements the flight controller of a tiny drone. The shape is

55

specifically designed to implement the drone's body and arms. You will also
learn how to create PCBs with complicated shapes in this book.

Figure 1.5.12: Featured board 'Made with KiCad': Crazyflie.

With this chapter complete, you should now understand the kinds of
projects that people use KiCad. These are also the kinds of boards that you
will design by the time you complete this book. Let's get straight into the first
project so that you can start discovering this fantastic tool by doing.

56

Part 2: Getting started with KiCad 6

57

1. Introduction
Welcome to Part 2 of this book.
In the chapters of this Part, I will give you a brief overview of KiCad 6.

This overview will help you with the first hands-on activity of this course, in
which you will create your first PCB in the chapters of the following two
Parts.

Ensure that you have installed KiCad on your computer so that you can
follow along. If you haven't done so yet, please go back to chapter "4. Get
KiCad for your operating system," where I provide information on installing
KiCad on Mac OS, Windows, and Linux.

In the following chapters, I will introduce the individual apps that
make up the KiCad software suite. I will also explain the roles of paths to the
symbol, footprint, 3D model, and template libraries, show you how to create a
new project from scratch and a template.

I will also compare KiCad 6 as it runs on the three supported platforms.
If you have experience with KiCad 5, read the relevant chapter at the end of
this Part.

Let's continue with the following chapter, where I'll give you an
overview of KiCad's core apps.

58

2. KiCad Project Manager (main window)
This chapter will give you an overview of the KiCad project manager,

otherwise known as the "main" KiCad window.

Figure 2.2.1: The KiCad Project Manager window.

This is the window that you will see first when you start KiCad. The
project manager gives you access to the various KiCad applications, like the
schematic and symbol editors, and shows you the project files.

The main window contains:
◦ A toolbar on the left.
◦ The project files are in the middle.
◦ The application buttons are on the right side.

The left toolbar has buttons to create a new project or open an existing
project and archive/unarchive.

The middle pane shows the project files and folders. This is essentially a
file browser that gives you access to the individual files and folders inside the
main KiCad project directory.

The right pane contains buttons for the individual applications. Say that
you want to start the schematic editor. You can do this in three ways:

1. Double-click on the file with the extension "kicad_sch" in the middle
pane (file browser).

2. Click on the Schematic Editor button in the right pane.

59

3. Click on "Schematic Editor" under Tools in the top menu (see below).

Figure 2.2.2: Starting the Schematic editor.

If you create a new directory via your operating system's file manager
or create a new file, the middle pane will display those items. Remember that
a KiCad project will contain files that KiCad creates and files created by other
tools, like the Autorouting autorouter and Git. You will learn about the core
files in KiCad later in this book.

You will learn about the buttons in the right pane in the next chapter.
First, let's do a tour of the items in the top menu bar.

Figure 2.2.3: The top menu bar in KiCad.

To get information about your instance of KiCad, click on "About KiCad"
under the KiCad menu item. You will need to use the information provided in
this window if you have found a bug and wish to report it to the development
team.

60

Figure 2.2.4: Report a bug.

To report a bug, open the About KiCad window, and click "Report
Bug" (see "1" above). This will use your web browser to open the New Issue
page in Gitlab. You will need to include your KiCad instance version
information, which you can get from the About KiCad window ("2", above).

Also, from the KiCad menu item, you can bring up the Preferences
window.

Figure 2.2.5: The KiCad Preferences window.

In the Preferences window contains several tabs with widgets that allow
you to customize KiCad. Exactly what you see here depends on which
applications are open. In the example above, only the main KiCad project
window is open. The right pane would contain additional items if Eeschema
or Pcbnew were also open. You can learn about the details in dedicated
chapters later in this book (Eeschema, and Pcbnew).

Under the File menu, you see the standard options for file and project
management. You can open/close a project, create a new project, archive/

61

unarchive a project, and import non-KiCad projects. You will find some of
those options as buttons in the right toolbar of the main KiCad window.

Figure 2.2.6: The KiCad File menu.

You will be using those options in the projects through this book. In the
Recipes part of this book, you can learn how to import a non-KiCad project,
and how to archive/unarchive.

Under View, you can use a text editor to view any of KiCad's project files.
You can define your preferred text editor in the Preference window in the
Common tab. Below you can see an example of a KiCad schematic file loaded
in the Atom text editor.

Figure 2.2.7: A schematic design file in a text editor.

All KiCad files are text files, and as such, you can open them in a text
editor. It is also possible to programmatically edit those files using automation

62

implemented in a language like Python directly, without needing an API.
Beware, though: modifying these files by hand or programmatically without
knowing precisely what you are doing will most likely damage your KiCad
project. Always back up your work before any such experimentation!

The Tools dropdown menu gives you access to the individual apps in the
KiCad software suite. The items in this menu replicate the application buttons
in the right pane of the KiCad main window.

Figure 2.2.8: The Tools menu items.

I will describe these applications in the next chapter.
Under Preferences (not to be confused with the Preferences window

under "KiCad"), you can access the Paths, Symbol Libraries, and Footprint
Libraries manager windows.

63

Figure 2.2.9: The Preferences menu.

I have written a dedicated chapter on these manager windows with
details later in this Part of the book.

Finally, the help menu. It allows you to access a local copy of the official
KiCad documentation, which opens in your browser, and a window that
contains a list of hotkeys. Be mindful that this documentation may be old.
When I am writing this, this documentation has not been updated since
KiCad 5.0.0-rc2, and most of the links are not working.

The Hotkeys window, apart from listing current hotkeys, allows you to
make changes. I prefer to keep the default hotkeys unless there is a conflict
with other applications running on my computer.

This was an overview of the main KiCad window, the KiCad project
manager. In the next chapter, you will learn about the individual applications
that make up the KiCad software suite.

64

3. Overview of the individual KiCad apps
In the previous chapter, you learned about the KiCad Project Manager. This

chapter will give you a tour of the individual applications that make up the
KiCad software suite.

As you may recall from the previous chapter, you can access the KiCad
applications via the project manager’s right pane or the Tools menu. To open
Eeschema or Pcbnew, you can also double-click on the schematic and layout
files listed on the middle page of the project manager.

Let’s take a closer look at each of the KiCad applications.

Schematic editor: Eeschema
Click on the Schematic Editor button to open the application. You can see

the editor window below.

Figure 2.3.1: Eeschema, or the Schematic Editor.

You use Eeschema to draw the schematic of the PCB. Although KiCad is
flexible enough and allows you to create PCBs without a schematic, this is
rarely a good idea. The schematic diagram captures all necessary information
that the layout editor uses: components (as symbols), wires that connect pins,

65

nets, and various kinds of netlabels, busses, power nets, and much more.
Eeschema is the first KiCad application you will use when you start a new
KiCad project.

In the example above, you can see a schematic from one of the projects in
this book. You can see the symbols (such as U2, R1, and R2), green wires
connecting pins, special symbols representing unconnected pins and power
nets, and other elements like graphics and text labels.

You can learn how to use and configure the schematic editor in a dedicated
Part of this book.

Layout editor: Pcbnew
Once you have completed work in Eesceham, you will continue with the

Layout editor, or “Pcbnew.” To open Pcbnew, you can click on the Pcbnew
button in the KiCad project manager or the Pcbnew button in the top toolbar
of Eesceham. Below you can see an example instance of Pcbnew.

Figure 2.3.2: Pcbnew, or the Layout Editor.

In the example above, you can see the finished PCB design from one of
the projects in this book. The layout editor allows you to select the layers and
design elements you want to see. For example, you can enable or disable the
visibility of layers, footprints, tracks, zones, and vias. In the example above, I
have enabled the visibility of all layers and elements and an outline of the top
and bottom copper zones.

66

The layout editor includes various sophisticated tools, such as an
interactive router and a 3D viewer. You can see a 3D rendering of the PCB
from Figure Figure 2.3.2 below:

Figure 2.3.3: The 3D viewer in Pcbnew.

You can learn how to use and configure the layout editor in a dedicated
Part of this book.

Symbol Editor
Let’s continue with the Symbol Editor. You can open this application from

the KiCad Project Manager or the top toolbar of Eeschema.

67

Figure 2.3.4: The Symbol Editor.

With the Symbol Editor, you can modify existing symbols or create new
ones. You can think of the Symbol Editor as a simplified version of the
schematic editor. In the Symbol Editor, you can work with a single symbol at a
time.

KiCad 6 comes with an extensive set of symbol and footprint libraries.
There are also thousands of third-party symbols and footprints that you can
import. However, you will eventually need to create a symbol, and that’s
when the Symbol Editor comes in.

You can learn how to create new symbols from scratch later in this book.

Footprint editor
Similar to the symbol editor, there is also the footprint editor. You can open

the footprint editor from the KiCad project window or the Pcbnew top toolbar.

68

Figure 2.3.5: The Footprint Editor.

With the footprint editor, you can create a footprint from scratch or
modify an existing footprint. The footprint editor also contains a wizard that
allows you to quickly generate footprints that follow convention, such as
those that use BGA, QFN, DIP and SOIC, packages.

You can learn how to use the footprint editor in a dedicated chapter.

Gerber Viewer
When you have completed work on your PCB and wish to order it from an

online manufacturer, the most common way is to export a set of Gerber files
from Pcbnew. Before you upload those files to your preferred manufacturer,
you should take the time to inspect them. KiCad has a tool for this: the Gerber
Viewer.

Figure 2.3.6: The Gerber Viewer.

69

With the Gerber Viewer, you can examine the project Gerber files
visually, layer by layer. This way, you can ensure that all its elements are
correct. Silkscreen text and graphics, drills, copper fills, the board outline, and
cutouts, etc.

Think of the Gerber Viewer as a quality control tool. Use it to reduce or
eliminate the risk of ordering a defective PCB.

You can learn how to export the Gerber files and use the Gerber Viewer
(and online Gerber viewers) in dedicated chapters later in this book.

Image Converter
You can open the image converter app from the KiCad Project Manager.

With the Image converter, you can convert a bitmap image into a footprint.
Typical uses of the converter are to create a graphics footprint (such as a
company logo) or a footprint with an irregular shape that would be too
tedious to design in the footprint editor.

Figure 2.3.7: The Image Converter.

In the example above, I use the Image Converter to create a logo that I can
include in my PCBs. You can learn how to use the Image converter in a
dedicated chapter in Part 13 of this book.

Calculator tools
The calculator tool contains multiple calculators. Here is a list of tools:

1. Voltage regulators.
2. RF Attenuators.

70

3. E-Series.
4. Resistor color codes.
5. Transmission lines.
6. Via size.
7. Track Width.
8. Electrical spacing.
9. Board classes.

In the example below, I am using the Track Width calculator to calculate the
correct width given a set of parameters.

Figure 2.3.8: The Calculator tool.

You can learn how to use the Track Width calculator by reading the
relevant chapter in the Recipes part of this book. The mode of operation for
the rest of the calculators is similar.

Drawing Sheet editor
The last main application in the KiCad suite is the Drawing Sheet editor.

You can use this editor to customize your schematic editor sheet. You can see
the editor in the example below.

71

Figure 2.3.9: The Drawing Sheet editor.

With the Drawing Sheet Editor, you can change the size of the schematic
sheet and everything within it. For example, you can remove or change the
size and location of the information container. You can also change the setup
of the text placeholders inside the information box.

To learn how to use the Drawing Sheet Editor, please read the relevant
chapter in the Recipes part of this book.

72

4. Paths and Libraries
In the KiCad project window, you will find the paths and libraries

configurations options under the preferences menu item.

Figure 2.4.1: The Preferences menu.

Let’s look at each one.

Configure Paths
Bring up the “Configure Paths” window from the Preferences menu.
This window contains a table to environment variables that contain paths

to important collections of files.

Figure 2.4.2: The “Configure Paths” window.

73

As you can see in the figure above, there are five path environment
variables:
◦ KICAD6_3DMODEL_DIR: points to a directory that contains 3D

models of components for use by the 3D viewer. Learn more about this
in a dedicated chapter.

◦ KICAD6_3RD_PARTY: points to a directory that contains 3rd party
plugins, libraries, and other downloadable content.

◦ KICAD6_FOOTPRINT_DIR: points to a directory that contains
footprint files for use by Pcbnew. Learn more about this in a dedicated
chapter.

◦ KICAD6_SYMBOL_DIR: points to a directory that contains symbol files
for use by Eeschema. Learn more about this in a dedicated chapter.

◦ KICAD6_TEMPLATE_DIR: points to a directory that contains sheet
template files for use by Eeschema. Learn more about this in a
dedicated chapter.

◦ KICAD_USER_TEMPLATE_DIR: points to a directory that contains
project template files created by the user. You can use these template
files to start a new project quickly. Learn more about this in a dedicated
chapter.

When you install KiCad, these variables will inherit default values that
point to the KiCad application installation folder. You can use the Configure
Paths window to change these values.

For example, my computer has a solid-state drive with a limited amount of
available space on it. Because the libraries (especially the 3D models) take
several gigabytes of storage, I have opted to use my external RAID drive for
those resources. As you can see in Figure 2.4.2 above, the footprint, symbol,
and 3D model paths point to my external RAID drive, while the rest point to
locations on the internal SSD.

Manage Symbol Libraries
Use the symbol libraries manager to:

• Add new symbol libraries.
• Delete symbol libraries.
• Activate or deactivate symbol libraries.

74

The Symbol Libraries window contains a list of active or inactive libraries
installed in your KiCad instance. Each library may contain one or more
schematic symbols. When a library is installed and activated, you can use its
symbols in your schematics in Eeschema.

Figure 2.4.3: The “Symbol Libraries” window.

In the figure above, you can see the Symbol Libraries window with
several of the libraries installed in my instance of KiCad.

Notice that:
◦ The table contains two tabs: “Global Libraries” and “Project Specific

Libraries.” You can manage libraries under each tab to control the
library visibility (global or project-specific).

◦ Each library has a name and a path. The path can use an environment
variable, as in the example above. Alternatively, you can set an absolute
path to a library; this is often a good option when you want to install a
library stored outside the standard environment paths.

◦ If you forget the environment variable paths, look at the bottom of the
window. In the table “Path Substitutions,” you can see the actual path
stored in the environment variables.

Learn how to use the symbol libraries manager in a dedicated chapter later in
this book.

75

Manage Footprint libraries
Use the footprint libraries manager to:

• Add new footprint libraries.
• Delete footprint libraries.
• Activate or deactivate footprint libraries.

The footprint libraries manager window works similarly to the symbol
libraries manager.

Figure 2.4.4: The “Footprint Libraries” window.

You can control the context of a library by listing them under the “Global
Libraries” or “Project Specific Libraries” tab. Each library has a name and a
path, and the path may contain an environment variable or an absolute path.
Learn how to use the footprint libraries manager in a dedicated chapter later
in this book.

76

5. Create a new project from scratch
In this chapter, you will learn how to create a new KiCad project.
Kicad offers you two ways to start a new project:

1. A new blank project.
2. A new project from a template.

Figure 2.5.1: KiCad offers two ways to start a new project.

When you start a new project from a template, you can take advantage of
work that you (or the original author of the template) have done in the past.
Project templates offer an excellent way to speed up the initial time-
consuming steps for projects that share a common base. For example, if you
create Arduino shields, you can set up an Arduino shield base template and
use it to create new Arduino shield projects. You can learn more about project
templates in a dedicated chapter in the Recipes part.
In this chapter, you will create a new blank project. In the File menu, click on
“New Project…”. In the window that appears, set a name (“1”, below), check
the new folder box to have KiCad automatically create a new folder for your
project (“2”), and click Save (“3”).

77

Figure 2.5.2: Set a name and directory for the new project.

KiCad will set up your new project. In the project folder, you will see
three new files:

1. The main project file with extension “.kicad_pro.”
2. The schematic design file with extension “.kicad_sch.”
3. The layout design file with extension “.kicad_pcb.”

The KiCad project window will show the project as a hierarchy tree. At the top
of the hierarchy is the project file (“.kicad_pro”), and inside of that are the
schematic and layout files.

Figure 2.5.3: The new project is ready.

At this point, your new project is ready. You can open the schematic
editor and begin work on the schematic. This is where you will begin work in
the next part of this book, in which you will work on your first KiCad project.
In the next chapter, you will learn how to create a new KiCad project from a
template.

78

6. Create a new project from a template
In this chapter, you will learn how to create a new project from a template.

KiCad comes with several project templates ready to use, but you can also
create yours. You can read a dedicated chapter in the Recipes part if you are
interested in creating custom project templates.

Click on “New Project from Template” in the File menu to create a new
project from a template. The project templates window will appear (see
below).

Figure 2.6.1: The project templates selector.

The selector window contains two tabs: System Templates and User
Templates.

79

In a new KiCad installation, the User Templates tab will be empty until
you create a new template and store it in the appropriate template directory
(learn how to do this in the relevant chapter in the Recipes part).

The System Templates tab shows a collection of built-in templates. Click
on a template icon to see information about it. For this example, I have
selected one of the Raspberry Pi templates. The information box shows a
description of the template. The description is composed of regular HTML so
that you can include text, links, and images.

After selecting the template, you want to use, click OK. This will bring
up the Save dialog box. This is identical to the dialog box that appears when
you create a new blank project. Give the new project a name and location, and
click Save.

Figure 2.6.2: The name and location of the new project.

When KiCad finished creating the new project from the Raspberry Pi
template, you will see several new files in the project folder (right, below) and
the project hierarchy in the KiCad project window (left, below).

Figure 2.6.3: The new project created from a project template.

80

In the project folder (above, right), notice that several additional files also
appear in addition to the project, schematic, and layout files. These additional
files have been copied from the Raspberry Pi project template.

In the KiCad project window, click on the Schematic Editor button to open
Eeschema. In a new blank project, the schematic editor is empty. But this is a
new project from a template; the schematic and layout editors are already
populated with seeding content.

Below is the schematic editor showing a header and mounting holes for a
Raspberry Pi project:

Figure 2.6.4: The new project schematic is already populated with content from the template.

Similarly, the layout editor is already populated with content from the
template:

81

Figure 2.6.5: The new project layout is already populated with content from the template.

As you can see, much of the work has already been done. In the layout
editor, the design of the board outline requires exact measurements, which are
time-consuming. The placement of the mounting holes and connectors,
likewise, must be exact and, as a result, very time-consuming. All this is work
that you can avoid when you create a new project from a template.

Creating a new project from a template is an example of a productivity-
boosting tool that KiCad provides. You will learn about many more in this
book.

82

7. KiCad 6 on Mac OS, Linux, Windows
KiCad has supported multiple operating systems from its early days.

When I started using KiCad in version four, I used it on Windows, Mac OS,
and Linux (Ubuntu). However, there were differences between those
platforms, both in terms of reliability (I found Windows, generally, worked
better) and how the user interface looked and behaved.

I have been using KiCad 6 almost daily for almost nine months now, and I
feel that KiCad works seamlessly on the three operating systems I have used
(Mac OS, Windows 10, and Linux).

I spent a lot of time comparing the two. My testing consisted of a single
project that I opened and edited across the three operating systems. I used
KiCad's ”archive project” function, which you can find under "File" in the
KiCad project window. Opening and working on a project that I previously
edited on a different operating system were trouble-free.

Below, you can see the same project's main KiCad project window in Mac
OS, Windows, and Kubuntu. They look identical while following the UI
conventions of their host operating system.

83

Figure 2.7.1: KiCad project window on three OSs.

There were no surprises in terms of KiCad's main applications,
Eeschema and Pcbnew, and how those work. Shortcuts, mouse conventions,
menus, buttons, colors; all work as expected in a truly cross-platform
compatible application suite.

Below is an example of Eeschema in the three operating systems:

84

Figure 2.7.2: Eeschema in the three OSs.

And here is Pcbnew:

85

Figure 2.7.3: Pcbnew in the three OSs.

The same uniformity appears when testing other KiCad applications, such
as the 3D viewer, the various preferences windows, and the interactive router.
Even secondary widgets and features work well across the supported
platforms.

86

Figure 2.7.4: Schematic Setup in Mac OS and Windows.

The quality of the implementation of Kicad in the three operating systems I
have tested is excellent. The implication for solo users and teams is that you
can use KiCad 6 with high confidence that you can edit the same projects
across platforms. If you are in a team, your team members will work using
their preferred operating system.

87

8. Differences between KiCad 6 and 5
KiCad 6 is a significant upgrade over KiCad 5. If you are new to KiCad,

and KiCad 6 is the first KiCad you have ever used, you can safely ignore this
chapter. Go ahead to Part 3, and begin work on your first KiCad project.

However, if you have used a previous version of KiCad and created one or
more projects, you take some time to read a blog post that I wrote in early
2021. In that blog post, I go into detail to highlight and explain the differences
between KiCad 6 and KiCad 5.

Figure 2.8.1: Peter’s Big KiCad 6 review.

Here, I will list my top-three most significant changes in KiCad 6:
1. KiCad 6 has a new file format. The transition into this format, based on

the S-Expressions standard, started in KiCad 5. With KiCad 6, the
transition is complete.

2. The user interface is refreshed and modernized. While in KiCad 6, the
user interface is still recognizable from the earlier versions, it follows

88

modern conventions on how the mouse and keyboard work. If you are
coming from an earlier version of KiCad, you will use your existing
KiCad knowledge. Icons have been redesigned. The menus and toolbars
are better placed and organized. There is a single Preferences window.

3. The schematic editing paradigm is updated. Now, when you click on an
element in the schematic editor, the element is selected. This was not the
case in KiCad 5 and prior, causing much confusion and frustration.

Get the full details of what’s new in KiCad 6 in my comprehensive blog
post.

89

Part 3: Project - A hands-on tour of
KiCad - Schematic Design

90

1. Introduction to schematic design and objective of
this section

In Part 3 of the book (which you are reading now), you will learn about the
basics of KiCad by working and completing a simple PCB project. In Part 3,
the focus is on the schematic design, while in Part 4, the focus shifts to the
layout design and the manufacturing. By the end of this project, you will have
experienced the PCB design process using KiCad from start to finish.

While this first project is relatively simple, it will teach you the most
important KiCad features and tools. You will develop skills that you will use
in every future project regardless of its complexity.

As you work your way through this project, remember that you may need
to reference the chapters in Part 13, Recipes, if you want to learn more details
about specific features. To keep the size of the project concise, I have moved
detailed descriptions of various features and tools to the end of the book.

The practical objective of this project is to design and manufacture a simple
LED torch, like the one you see in 3.1.1 (below):

Figure 3.1.1: The manufactured project deliverable.

Most of the work will be in Eeschema (the schematic design editor) and
Pcbnew (the layout design editor). At the end of this Part 3 of the book, the
schematic design will look like this (Figure 3.1.2):

91

Figure 3.1.2: The final project schematic design.

The final layout will look like this (Figure 3.1.3):

Figure 3.1.3: The final project layout design.

To guide the design of the PCB, I will be using the PCB design workflow
that I outlined earlier in this book. I am also providing a summary in the next
chapter.

The schematic (see Figure 3.1.2) contains only a few standard component
symbols: an LED, a resistor, a button switch, and a battery holder. All these
symbols are available in the KiCad libraries, so you will not need to get them

92

from external sources. Electrically, the circuit contains a single loop. When you
press the button, the circuit closes, and the LED turns on.

Despite this being a simple project, you will learn how to find and add
symbols to the editor, associate them with layout footprints, annotate them,
wire them, create named nets, run the Electrical Rules Checker, and decorate
the schematic with text and graphics.

In Part 4, you will learn how to import the schematic in Pcbnew and design
the physical layout, complete with beautifully rounded corners, mounting
holes, silkscreen graphics, and, of course, pass the design rules check before
sending it to manufacturing.

93

Part 4: Project- A hands-on tour of
KiCad - Layout

94

1. Introduction to layout design and objective of this
section

In the chapters of this part of the book, I will continue developing the LED
torch project that I started in Part 3. At the end of the previous chapter, I
completed the schematic design of the project PCB. I will now continue with
the layout design.

To guide me with this work, I will follow the steps outlined in the layout
design workflow that I outlined in Part 3.

To design the layout of the PCB, I’ll be using Pcbnew. At the end of this
part of the book, the PCB will look like this (Figure 4.1.1):

Figure 4.1.1: The final LED torch PCB layout.

Here is a 3D rendering, also made in KiCad (Figure 4.1.2):

95

Figure 4.1.2: The final LED torch PCB layout in 3D.

The final PCB layout of this simple project contains several interesting
elements:

" Both surface-mounted and through-hole components.
" Rounded edges moulded around the footprints of the PCB components.
" Silkscreen graphics (logos) and text.

Even though this is a simple project, it allows us to practice the essential skills
for PCB design using KiCad.

Let’s begin the layout design workflow with Pcbnew in the next chapter.

96

Part 9: Project - Design a simple
breadboard power supply PCB

97

1. Introduction
Welcome to Part 9 of this book! In the following chapters, you will learn

how to design a simple yet practical PCB. This PCB is a component of a
breadboard power supply. You can use this power supply to provide power to
circuits implemented on a mini breadboard, which is a core part of electronics
prototyping.

This project is an opportunity to use the knowledge you acquired in the
last part of this book to create a non-trivial PCB. To design this PCB, you will
be using the majority of the capabilities of KiCad’s schematic and layout
editors. You will also practice the PCB development workflow that you
learned in Part 6 of the book.

The inspiration for the design of this PCB came from my work at
creating small electronics circuits for my Arduino and ESP32 courses. When
the circuit I was building on the breadboard needed more power than the
MCU could provide, I would search through a range of possible options that
usually included one of my bench-top power supplies and wires. The problem
is that the bench-top power supplies are noisy (they have a large cooling fan),
need some setup (select voltage, current), and their wires get in the way. In
addition, I have drawers full of wall power supplies that I could be using.
They are plug-and-play and silent.

For my breadboard power supply, I needed something that:
1. Plugs directly on the breadboard; therefore, there are no wires.
2. Have an on/off switch.
3. Can provide 5V and 3.3V power.
4. Can draw power from a range of wall power supplies, from 6V to

12V.
After some deliberation, I settled for a design like the one in the image

below:

98

Figure 9.1.1: A 3D view of the breadboard power supply PCB.

The PCB’s dimensions and shape are constrained by the dimensions of
power row locations of the mini breadboard on which the PCB will connect.
The connection between the breadboard and the PCB is made via two sets of
pin headers. I have added two double screw terminals to provide an
additional way to output power via jumper wires instead of the pins.

Below you can see a photo that shows the PCB against a mini
breadboard:

Figure 9.1.2: The power supply PCB over a mini breadboard.

99

When the PCB is attached to the left side of the breadboard, almost the
entire right side is available for the prototyping circuit. The indentation
between the pin headers also allows access to the first couple of columns in
the breadboard that otherwise would have been covered.

To keep the power supply cable away from the prototyping area, I have
placed the barrel connector on the left side of the PCB. The voltage selector
switches are on the top and bottom of the board to make it easy to access.

Below you can see the final schematic design:

Figure 9.1.3: The project schematic design (final).

In the schematic above, you can see the power supply components
arranged in three functional groups. You can see the two major components,
the voltage regulators, inputs, outputs, and switches. You will work on the
schematic design in the next chapter.

We’ll do the schematic design in a single sheet. Most of the symbols
needed come with KiCad’s libraries, but one is available in the Digikey library.

Below, you can see the final layout design:

100

Figure 9.1.4: The project layout design (final).

The layout has several interesting features, including a composite shape
with rounded corners, copper fills, all THT components to make it easy to
assemble, a complete set of top and bottom silkscreen text and graphics, and is
manually routed.

Perhaps the most challenging aspect of the layout design is its
dimensions. The PCB’s pin headers have to match precisely with the mini
breadboard’s power row pins. To achieve a good match, you will need to
make accurate measurements on the breadboard and then use those
measurements to precisely position the two double pin headers. Then you will
design the board around those fixed footprints.

Below you can see the Bill of Materials for this project, as I have
extracted it from the KiCad project (learn how later in this book):
Referenc
e

Value Footprint

C1 10u Capacitor_THT:C_Disc_D3.0mm_W1.6m
m_P2.50mm

101

C2 1u
Capacitor_THT:C_Disc_D3.0mm_W1.6m
m_P2.50mm

C3 0.1u
Capacitor_THT:C_Disc_D3.0mm_W1.6m
m_P2.50mm

D1 LED LED_THT:LED_D5.0mm

J1 Barrel_Jack_Switch Connector_BarrelJack:BarrelJack_Horizo
ntal

J2, J5
Screw_Terminal_01x
02

TerminalBlock:TerminalBlock_bornier-2_
P5.08mm

J4, J6 Conn_01x02_Male
Connector_PinHeader_2.54mm:PinHead
er_1x02_P2.54mm_Vertical

J3, J7 Conn_01x03_Male
Connector_PinHeader_2.54mm:PinHead
er_1x02_P2.54mm_Vertical

R1, R2 330
Resistor_THT:R_Axial_DIN0204_L3.6m
m_D1.6mm_P7.62mm_Horizontal

R3 560
Resistor_THT:R_Axial_DIN0204_L3.6m
m_D1.6mm_P7.62mm_Horizontal

S1 EG1218
digikey-
footprints:Switch_Slide_11.6x4mm_EG12
18

U1 LM317_TO-220
Package_TO_SOT_THT:TO-220-3_Vertica
l

U2 LM7805_TO220
Package_TO_SOT_THT:TO-220-3_Vertica
l

Table 9.1.1: The Bill of Materials for this project.

Let’s begin with the schematic design in the next chapter.

102

Part 10: Project - A 4 x 8 x 8 LED matrix
array

103

1. Introduction
Welcome to Part Ten! In the chapters that follow, you will design a PCB

that can hold four 8x8 LED matrix displays controlled by an Arduino Pro
mini. The board also includes two push buttons to which you can assign
arbitrary functions. I plan to use mine as a Pomodoro timer. I will use one
button to select the lap duration (say, 15, 20, or 25 minutes) and the other
button to reset the timer. When the duration I have set expires, the display
will blink to let me know.

You can see the two sides of the populated PCB in the photograph
below:

Figure 10.1.1: The PCB in this project, populated.

The inspiration for this project is that I forget to get up from my desk at
regular intervals. I could use a desktop or phone Pomodoro app or even a
classic mechanical Pomodoro timer, but why buy one when I can make one?

I decided to use an Arduino Pro Mini because:
" I have a lot of them.
" They are easy to find in the market

104

" They are very cheap.
" They are small.
" They have an onboard regulator.
" They are accurate enough to count short periods.
" I don’t need a clock function, so the absence of a real-time clock is not

an issue.
This board does not contain a UART to USB interface, so you must

provide an external bridging device. This device is required for programming
the microcontroller. I use a USD to serial adaptor from Freetronics, but there
are many other options in the market.

I decided to use the 8x8 LED matrix display module because I like its
versatility. An 8x8 LED matrix display can show numbers, text, and simple
graphics compared. I also like the way it looks from a distance and the ability
to create simple animation. All this gives me scope to add features to my
Pomodoro project in the future.

Below you can see the schematic for this PCB. This is the schematic you
will create by the end of Chapter 10.2.

Figure 10.1.2: The project schematic.

To draw this schematic, I have opted to use line wires for all pins that
are nearby. I have added net labels to all power, data, clock nets, and button
signal nets. I was unable to find a schematic symbol for the Arduino Pro Mini
board that I planned to use, so I created one, along with its matching

105

footprint. In the layout, I have included four mounting holes. To avoid getting
error messages from the DRC, I have associated the mounting hole footprints
with mounting hole symbols in the schematic.

Another consideration was how to deal with the LED matrix modules. I
was not able to find a symbol and footprint for this device, so I had two
options:

1. Create a custom symbol and footprint, as I did with the Arduino Pro
Mini module.

2. Ignore the module, and concentrate on the headers.
Since I went with option 1 for the Arduino module, I opted for option 2

for the LED modules. Instead of treating each LED module as a single device,
I treated it as a set of two-pin headers. My objective, then, was to wire the
header symbols correctly and place their footprints precisely on the PCB (see
the discussion on the PCB below).

Below is the layout of the PCB, as it will be at the end of Chapter 10.3:

Figure 10.1.3: The project layout.

The dominating feature of this board is its shape. I wanted to
experiment with a shape that uses “arms” that extend from its center to hold
the LED modules rather than a conventional rectangular shape. I did not do
this to reduce the manufacturing cost. Even though the shape you see above
has two significant parts of the substrate material removed, the
manufacturing cost relates to the all-inclusive height and width of the board
(you can see those dimensions in the figure above). But I do think that the
board with the four arms extending from the center looks great. Along with
the rounded edges and the button notch at the bottom, I am satisfied with the
physical design aspect of the board.

106

A significant challenge for the layout design of this board is the position
of the pin headers for the LED modules. As I mentioned above, I decided to
treat the LED modules as a set of two headers each (input and output). The
positions of those headers must be very accurate. If the headers are too far
from their neighbors, the four-module display will not look continuous but as
four individual displays. If they are too close, the assembly will not be
possible as there will not be enough space on the board to attach adjacent
modules.

As a result, this project will give you the opportunity to use all of
KiCad’s measurement and alignment tools to make sure that the end product
looks beautiful and works.

Below you can see the Bill of Materials for this project, as I have
extracted it from the KiCad project (learn how later in this book):
Referen
ce

Value Footprint

H1-H4 MountingHole MountingHole:MountingHole_2.5mm

J1 LED1_IN
Connector_PinHeader_2.54mm:PinHeader_1
x05_P2.54mm_Vertical

J2 Barrel_Jack Connector_BarrelJack:BarrelJack_Horizontal

J3 LED1_OUT
Connector_PinHeader_2.54mm:PinHeader_1
x05_P2.54mm_Vertical

J4 LED2_IN
Connector_PinHeader_2.54mm:PinHeader_1
x05_P2.54mm_Vertical

J5 LED2_OUT
Connector_PinHeader_2.54mm:PinHeader_1
x05_P2.54mm_Vertical

J6 LED3_IN
Connector_PinHeader_2.54mm:PinHeader_1
x05_P2.54mm_Vertical

J7 LED3_OUT
Connector_PinHeader_2.54mm:PinHeader_1
x05_P2.54mm_Vertical

J8 LED4_IN
Connector_PinHeader_2.54mm:PinHeader_1
x05_P2.54mm_Vertical

J9 LED4_OUT
Connector_PinHeader_2.54mm:PinHeader_1
x05_P2.54mm_Vertical

R1, R2 10K
Resistor_THT:R_Axial_DIN0204_L3.6mm_D1
.6mm_P7.62mm_Horizontal

107

S1, S2 1825967-1 1825967-1:SW_1825967-1
S3 SS12D07VG4 SS12D07VG4:SW_SS12D07VG4

U1
ArduinoProMiniS
imple

DesktopLibrary:ArduinoProMiniCustom

Table 10.1.1: The Bill of Materials for this project.

Apart from the custom symbol and footprint Arduino Pro Mini, I used
Snapeda to find the symbol-footprint pairs for the two buttons (S1 and S2) and
the power barrel connector (S3).

Let’s begin with the schematic design in the next chapter.

108

Part 11 : Project - MCU datalogger

109

1. Project - Introduction
Welcome to Part 11. In this Part, you will design a printed circuit board for

a microcontroller data logger. The data logger is based on an Atmega 328P-AU
microcontroller and is supported by two EEPROMs and a real-time clock.
Additional components on the board, such as status LEDs with their
supporting resistors, two crystal oscillators, connectors, and capacitors.

You will use SMD packages for most components on a rectangular two-
layer board with mounting holes on the four corners.

The project highlights are:
1. You will use Git to capture the history of the project’s development.
2. You will design two versions of the PCB: one with two layers and

one with four layers. Both will use data from the same schematic design.
KiCad, on its own, does not allow the creation of more than one layout for

a schematic. Git makes this possible with the use of branches. This project will
allow you to practice this aspect of Git-powered PCB design with KiCad.

The schematic design contains components distributed across two sheets.
You can see the final schematic below (sheet 1):

Figure 11.1.1: Sheet 1 of the project’s final schematic design.

110

In Sheet 1, I have placed the main components of the board. Sheet 2
contains the connectors:

Figure 11.1.2: Sheet 2 of the project’s final schematic design.

In the schematic design, I have used a combination of line wires and net
labels. Other than the distribution of the components across the two sheets,
the techniques I have used to draw the schematic should be familiar to you
from previous projects.

The most exciting aspect of this project is the layout design: you will
design two versions of the PCB. A two-layer and a four-layer version. You can
see the final version of the two-layer PCB layout below:

Figure 11.1.3: The project’s final layout design (two layers).

You can see the final four-layer PCB below:

111

Figure 11.1.4: The project’s final layout design (four layers).

The main objectives of this project are:
1. To help you practice skills you acquired in previous projects.
2. To use Git in a non-trivial project to extend KiCad’s use cases in a

single-schematic and multi-layout project.
3. To gain experience in creating multi-layer PCBs.

Below you can see the Bill of Materials for this project, as I have
extracted it from the KiCad project (learn how later in this book):

Re
ference

Value Footprint

BT
1

Battery Connector_PinHeader_2.54mm:PinHea
der_1x02_P2.54mm_Vertical

C1
,
C4

0.1uF Capacitor_SMD:C_0805_2012Metric

C2
,
C3

22pF Capacitor_SMD:C_0805_2012Metric

C5 100nF Capacitor_SMD:C_0805_2012Metric
D1
,
D2

LED LED_SMD:LED_0805_2012Metric

H1
-H
4

MountingHol
e MountingHole:MountingHole_2.1mm

J2 Conn_01x09_
Male

Connector_PinHeader_2.54mm:PinHea
der_1x09_P2.54mm_Vertical

112

J1
,
J3

Conn_01x04_
Male

Connector_PinHeader_2.54mm:PinHea
der_1x04_P2.54mm_Vertical

J4 Conn_02x03_
Odd_Even

Connector_PinHeader_2.54mm:PinHea
der_2x03_P2.54mm_Vertical

R1
,
R2
,
R6

10K Resistor_SMD:R_0805_2012Metric

R3
,
R4

4.7K Resistor_SMD:R_0805_2012Metric

R5
,
R7

330 Resistor_SMD:R_0805_2012Metric

U2 DS1337S+ Footprints:SOIC127P600X175-8N
U1
,
U3

24LC1025 Package_SO:SOIC-8_5.23x5.23mm_P1.
27mm

U4 ATMEGA328P-
AU Footprints:QFP80P900X900X120-32N

Y1 32.768 KHz Crystal:Crystal_SMD_5032-2Pin_5.0
x3.2mm_HandSoldering

Y2 16 MHz Crystal:Crystal_SMD_5032-2Pin_5.0
x3.2mm_HandSoldering

Table 11.1.1: The Bill of Materials for this project.

I used Snapeda to find the symbol-footprint pairs for U4. You should be
able to find all other symbols and footprints in KiCad’s libraries.

In the next chapter, you will begin work on this project by creating a
new KiCad project and Git repository.

113

1. Project - Introduction
Welcome to Part 12 of this book. In the chapters that follow, you will

design an ESP32 development board. To assist you with the design process,
you will use the reference schematic design from Espressif, the original
designer and manufacturer of the original ESP32 dev kit module.

By working on this project, you will learn how to use and modify reference
designs. The ESP32 is a widely used and understood board. It is compact, yet
packs significant computing power and capabilities. It’s circuit board is more
complex compared to those in the previous projects of this book, but not to
complex to make this project long and tedious.

Below you can see the layout design as it will look once the project is
completed.

114

Figure 13.1.1: The ESP32 development kit clone project deliverable.

In this instance of the development kit, I have retained the form factor and
shape of the original ESP32 development kit. This is a four-layer board, with
the ESP32 module at the top with its integrated antenna extending outside of
the board, the power and serial communications port at the bottom, and the
pin headers along the sides. The board also features the two control buttons,
“BOOT” and “EN”, and uses SMD components on the front and back. Here’s
a view of the reference layout:

115

Figure 13.1.2: A view of the ESP32 development kit reference layout.

Once you understand the design elements of this board, you will be able to
modify its shape and component placement to match the requirements of
your project. For example, in my instance of the board, I have chosen to place
the voltage regulator in the back of the PCB, even though in the reference
design the regulator in is the front. I did this because I wanted to allow more
room in the front for small components, like the resistors, to make assembly
by hand easier.

Below you can see the final schematic.

116

Figure 13.1.3: The ESP32 development kit clone project schematic.

Thanks to the ESP32 module’s highly integrated design, the board that
hosts the module (i.e. the development kit) is relatively simply. In the instance
of the development kit design that you see above, I have arranged the
components in five functional groups, and I have drawn all details from the
original Espressif reference schematic design. You can see the reference
schematic design below:

Figure 13.1.4: The ESP32 development kit reference schematic.

You will learn more about this in chapter 2.
Below you can see the 3D rendering of the development kit.

Figure 13.1.5: A 3D rendered view of the project deliverable.

The 3D rendering contains models for all components and is accurate in
terms of what the final manufactured board would look like.

The process of customising an existing board begins by finding the original
schematic and layout designs. In the case of the ESP32 development kit, you
can find the official reference designs in the Espressif website (https://

117

www.espressif.com/en/support/documents/technical-documents). I have
used the references design for the ESP32-DevKitC-v4 board. You can use the
search filter to find this design (or try my search URL ”https://
www.espressif.com/en/support/documents/technical-documents?
keys=ESP32-Devkit”).

Figure 13.1.6: The source documentation and designs for this project.

Download the ZIP file that contains everything you will need for this
project: the schematics, the PCB layout, and the BOM. The ZIP also contains a
set of Gerber files which you do not need (you will generate a new set at the
end of the project).

The reference BOM is very important because it gives you all the
components and their values that you will need for your custom board. These
components and values are tested by Espressif and used in millions of
manufactured board, so you can be confident that they will work. I used the
reference BOM to help me select symbols and footprints for my instance of the
board. The project BOM that you see below contains information that I
sourced from the reference BOM.

Refere
nce

Value Footprint

C1, C2, C21 22uF/10V(20%) Capacitor_SMD:C_0201_0603Metric

118

C9, C14, C19,
C22

0.1uF/50V(10%) Capacitor_SMD:C_01005_0402Metric

C15
0.1uF/50V(10%)
(NC)

Capacitor_SMD:C_01005_0402Metric

C20 4.7uF/6.3V(10%) Capacitor_SMD:C_01005_0402Metric
D1 LED LED_SMD:LED_0603_1608Metric
D3 D_Schottky Diode_SMD:D_SOD-323
D4, D5, D6 D_TVS Diode_SMD:D_SOD-523

J1 USB_B_Micro
Connector_USB:USB_Micro-
AB_Molex_47590-0001

J2, J3 Conn_01x19_Male
Connector_PinHeader_2.54mm:PinHe
ader_1x19_P2.54mm_Vertical

MOD1 ESP32-WROOM-32
digikey-footprints:ESP32-
WROOM-32D

Q1, Q2 MMSS8050-H-TP digikey-footprints:SOT-23-3
R2, R24 2K(5%) Resistor_SMD:R_01005_0402Metric
R7, R18 0R(5%) Resistor_SMD:R_01005_0402Metric
R11, R21,
R22

10K(5%) Resistor_SMD:R_01005_0402Metric

R23 10K(5%)(NC) Resistor_SMD:R_01005_0402Metric
R25 22.1K(5%) Resistor_SMD:R_01005_0402Metric
R26 47.5K(5%) Resistor_SMD:R_01005_0402Metric

SW1, SW2 SW_Push
Button_Switch_SMD:SW_SPST_B3S-1
000

U1
CP2102N-A01-
GQFN28

Package_DFN_QFN:TQFN-28-1EP_5x
5mm_P0.5mm_EP2.7x2.7mm

U2 AMS1117-3.3
Package_TO_SOT_SMD:SOT-223-3_Ta
bPin2

Table 13.1.1: The Bill of Materials for this project.

The BOM shows several SMD components that are very small, such as the
0402 resistors. If you plan to assemble your custom board by hand, you
should consider the difficulty of working with such small components. But,
since this is your custom board, you can choose to replace those small
components with alternatives that you feel more comfortable to work with.

119

This is just an example of how you can modify a reference design to fit your
specific requirements.

The main objectives of this project are:
1. To help you practice skills you acquired in previous projects.
2. To gain experience in the design of a PCB based on an existing

reference design.
3. To gain experience in creating dense, four-layer PCBs.

I used Snapeda to find the symbol-footprint pairs for MOD1 (the ESP32
module). You should be able to find all other symbols and footprints in
KiCad’s libraries.

Let’s begin.

	Introduction
	Part 2: Getting started with KiCad 6
	Introduction
	KiCad Project Manager (main window)
	Overview of the individual KiCad apps
	Paths and Libraries
	Create a new project from scratch
	Create a new project from a template
	KiCad 6 on Mac OS, Linux, Windows

	Part 3: Project - A hands-on tour of KiCad - Schematic Design
	Part 4: Project- A hands-on tour of KiCad - Layout
	Introduction to layout design and objective of this section

	Part 9: Project - Design a simple breadboard power supply PCB
	Introduction

	Part 10: Project - A 4 x 8 x 8 LED matrix array
	Part 11 : Project - MCU datalogger
	Project - Introduction

	Project - Introduction

