3RD EDITION

KICAD LIKE
A PRO

FREE VIDEO COURSE COMPANION

DR PETER DALMARIS

e %
' 19 &\

The contents of this ebook are extracted from KiCad Like a Pro,
3rd edition, for the purpose of supporting your study of the
video course.

Tech®
Explorations

KICAD LIKE A PRO, THIRD
EDITION

KiCad Like a Pro, 3" Edition
By Dr Peter Dalmaris

Copyright © 2021 by Tech Explorations™

All rights reserved. This book or any portion thereof may not be reproduced or used in any
manner whatsoever without the express written permission of the publisher except for the use of brief
quotations in a book review.

Printed in Australia

First Printing, 2018

ISBN (PDF) : 978-1-68489-093-4
ISBN (epub): 978-1-68489-094-1
ISBN (mobi): 978-1-68489-089-7
Tech Explorations Publishing

PO Box 22, Berowra 2081 NSW

Australia

www.techexplorations.com

Cover designer: Michelle Dalmaris

Disclaimer

The material in this publication is of the nature of general comment only, and does not represent
professional advice. It is not intended to provide specific guidance for particular circumstances and it
should not be relied on as the basis for any decision to take action or not take action on any matter
which it covers. Readers should obtain professional advice where appropriate, before making any
such decision. To the maximum extent permitted by law, the author and publisher disclaim all
responsibility and liability to any person, arising directly or indirectly from any person taking or not
taking action based on the information in this publication.

Version 1

Did you find an error?

Please let us know.
Using any web browser, go to txplo.re/kicadr, and fill in the form.

We'll get it fixed right away.

About the author

Dr. Peter Dalmaris is an educator, an electrical engineer, electronics
hobbyist, and Maker. Creator of online video courses on DIY electronics and
author of several technical books. Peter has recently released his book 'Maker
Education Revolution', a book about how Making is changing the way we
learn and teach in the 21st century.

As a Chief Tech Explorer since 2013 at Tech Explorations, the company
he founded in Sydney, Australia, Peter’s mission is to explore technology and
help educate the world.

Tech Explorations offers educational courses and Bootcamps for
electronics hobbyists, STEM students, and STEM teachers.

A lifelong learner, Peter’s core skill lies in explaining difficult concepts
through video and text. With over 15 years of tertiary teaching experience,
Peter has developed a simple yet comprehensive style in teaching that
students from all around the world appreciate.

His passion for technology and the world of DIY open-source hardware,
has been a dominant driver that has guided his personal development and his
work through Tech Explorations.

About Tech Explorations

Tech Explorations creates educational products for students and
hobbyists of electronics who rather utilize their time making awesome
gadgets instead of searching endlessly through blog posts and Youtube
videos.

We deliver high-quality instructional videos and books through our
online learning platform, txplore.com.

Supporting our students through their learning journey is our priority,
and we do this through our dedicated online community and course forums.

Founded in 2013 by Peter Dalmaris, Tech Explorations was created after
Peter realised how difficult it was to find high-quality definitive guides for the
Arduino, written or produced by creators who responded to their reader
questions.

Peter was frustrated having to search for Youtube videos and blog
articles that almost never seemed to be made for the purpose of conveying
knowledge.

He decided to create Teach Explorations so that he could produce the
educational content that he wished he could find back then.

Tech Explorations courses are designed to be comprehensive, definitive
and practical. Whether it is through video, ebook, blog or email, our delivery
is personal and conversational.

It is like having a friend showing you something neat... the "AHA"
moments just flow!

Peter left his career in Academia after his passion for electronics and
making was rekindled with the arrival of his first Arduino. Although he was
an electronics hobbyist from a young age, something the led him to study
electrical and electronics engineering in University, the Arduino signalled a
revolution in the way that electronics is taught and learned.

Peter decided to be a part of this revolution and has never looked back.

We know that even today, with all the information of the world at your
fingertips, thanks to Google, and all the components of the world one click
away, thanks to eBay, the life of the electronics hobbyist is not easy.

Busy lifestyles leave little time for your hobby, and you want this time
to count.

We want to help you to enjoy your hobby. We want you to enjoy
learning amazing practical things that you can use to make your own
awesome gadgets.

Electronics is a rewarding hobby. Science, engineering, mathematics,
art, and curiosity all converge in a tiny circuit with a handful of components.

We want to help you take this journey without delays and frustrations.

Our courses have been used by over 70,000 people across the world.

From prototyping electronics with the Arduino to learning full-stack
development with the Raspberry Pi or designing professional-looking printed
circuit boards for their awesome gadgets, our students enjoyed taking our
courses and improved their making skills dramatically.

Here's what some of them had to say:

"I'm about half way through this course and I am learning so much. Peter is
an outstanding instructor. I recommend this course if you really want to learn about
the versatility of the amazing Raspberry Pi” -- Scott

"The objectives of this course are uniquely defined and very useful. The instructor
explains the material very clearly.” -- Huan

"Logical for the beginner. Many things that I did not know so far about Arduino but
easy to understand. Also the voice is easy to understand which is unlike many courses
about microcontrollers that I have STARTED in the past. Thanks” -- Anthony

Please check out our courses at techexplorations.com and let us be part
of your tech adventures.

From the back cover

Printed circuit boards (PCBs) are, perhaps, the most undervalued
component of modern electronics. Usually made of fibreglass, PCBs are
responsible for holding in place and interconnecting the various components
that make virtually all electronic devices work.

The design of complex printed circuit boards was something that only
skilled engineers could do. These engineers used expensive computer-aided
design tools. The boards they designed were manufactured in exclusive
manufacturing facilities in large numbers.

Not anymore.

During the last 20 years, we have seen high-end engineering capabilities
becoming available to virtually anyone that wants them. Computer-aided
design tools and manufacturing facilities for PCBs are one mouse click away:.

KiCad is one of those tools. Perhaps the world’s most popular (and
best) computer-aided design tool for making printed circuit boards, KiCad is
open source, fully featured, well-funded and supported, well documented. It
is the perfect tool for electronics engineers and hobbyists alike, used to create
amazing PCBs. KiCad has reached maturity and is now a fully featured and
stable choice for anyone that needs to design custom PCBs.

This book will teach you to use KiCad. Whether you are a hobbyist or
an electronics engineer, this book will help you become productive quickly,
and start designing your own boards.

Are you a hobbyist? Is the breadboard a bottleneck in your projects? Do
you want to become skilled in circuit board design? If yes, then KiCad and
this book are a perfect choice. Use KiCad to design custom boards for your
projects. Don’t leave your projects on the breadboard, gathering dust and
falling apart.

Complete your prototyping process with a beautiful PCB and give your
projects a high-quality, professional look.

Are you an electronics engineer? Perhaps you already use a CAD tool
for PCB design. Are you interested in learning KiCad and experience the
power and freedom of open-source software? If yes, then this book will help
you become productive with KiCad very quickly. You can build on your
existing PCB design knowledge and learn KiCad through hands-on projects.

This book takes a practical approach to learning. It consists of four
projects of incremental difficulty and recipes.

The projects will teach you basic and advanced features of KiCad. If you
have absolutely no prior knowledge of PCB design, you will find that the
introductory project will teach you the very basics. You can then continue
with the rest of the projects. You will design a board for a breadboard power
supply, a tiny Raspberry Pi HAT, and an Arduino clone with extended
memory and clock integrated circuits.

The book includes a variety of recipes for frequently used activities. You
can use this part as a quick reference at any time.

The book is supported by the author via a page that provides access to
additional resources. Signup to receive assistance and updates.

How to read this book

I designed this book to be used both to learn how to use KiCad, and as a
reference.

All examples, descriptions and procedures are tested on the nightly
releases of KiCad 6 (also known as KiCad 5.99) and in KiCad 6 RC1.

If you have never used KiCad and have little or no experience in PCB
design, I recommend you read it in a linear fashion. Don’t skip the early
chapters in parts 1 to 8 because those will give you the fundamental
knowledge on which you will build your skill later in the book. If you skip
those chapters, you will have gaps in your knowledge that will make it harder
for you to progress.

If you have a good working knowledge of PCB design, but you are new
to KiCad, you can go straight to Parts 7 and 8, zoom through them quickly,
and then proceed to the projects in Part 9.

Once you have the basic KiCad concepts and skills confidently learned,
you can use the recipes in Parts 7, 8 and 13 as a resource for specific problems
you need solved. These recipes are useful on their own. Throughout the text,
you will also find prompts to go to a particular recipe in order to learn a
specific skill needed for the projects.

Throughout this book, you will find numerous figures that contain
screenshots of KiCad. To create these screenshots, I used KiCad 5.99 and
KiCad 6.0 RC1 running on Mac OS. If you are using KiCad under Windows or
Linux, do not worry: KiCad works the same across these platforms, and even
looks almost the same.

Although I took care to produce images that are clear, there are cases
where this was not possible. This is particularly true in screenshots of an
entire application window, meant to be displayed in a large screen. The role of
these images is to help you follow the instructions in the book as you are
working on your computer. There is no substitute to experimenting and
learning by doing, so the best advice I can give is to use this book as a text
book and companion. Whenever you read it, have KiCad open on your
computer and follow along with the instructions.

This book has a web page with resources designed to maximize the
value it delivers to you, the reader. Please read about the book web page, what
it offers and how to access it in the section "The book web page', later in this
introductory segment.

Finally, you may be interested in the video course version of this book.
This course spans over 25 hours of high-definition video, with detailed
explanations and demonstrations of all projects featured in the book. The
video lectures capture techniques and procedures that are just not possible to
do so in text.

Please check in the book web page for updates on this project. Be sure to
subscribe to the Tech Explorations email list so I can send you updates.

Requirements

To make the most out of this book, you will need a few things. You
probably already have them:

¢ A computer running Windows, Mac OS or Linux.

e Access to the Internet.

* A mouse with at least two buttons and a scroll wheel. I use a Logitech MX
Master 25 mouse (see https:/ /amzn.to/2ClySq0).

* Ability to install software.

e Time to work on the book, and patience.

The book web page

As a reader of this book, you are entitled access to its online resources.

You can access these resources by visiting the book’s web page at
txplo.refkicadr.

The two available resources are:

1. Photos and schematics. Get high-res copies of the photos, schematics,
and layouts that appear in the book.

2. An errata page. As I correct bugs, I will be posting information about
these corrections in this page. Please check this page if you suspect that you
have found an error. If an error you have found is not listed in the errata
page, please use the error report form in the same page to let me know about
it.

Why all the ?? in the TOC?

The version of the book you are looking at is the video course companion.

This version of the book contains specific chapters from the full book - not
all of them.

For this reason, any chapter from the full book that is not available in this
companion is marked with “??” Instead of an actual page number in the Table
of Contents.

All the pages and chapters from the full book that are present in the
companion book will have the actual page number correctly listed in the TOC.

Table of Contents

Introduction, 29
1. WhatisaPCB? 30
2. The PCB design process. 36
3. Fabrication.
4. Get KiCad for your operating system . 43
5. Example KiCad projects. 47
Part 2: Getting started with KiCad 6. . 56
1. Introduction.______ 57
2. KiCad Project Manager (main window) 58
3. Overview of the individual KiCad apps______ ... 64
4. Paths and Libraries._ 72
5. Create a new project from scratch 76
6. Create a new project from a template______________ | 78
7.KiCad 6 on Mac OS, Linux, Windows_______ 82
8. Differences between KiCad6and5 87
Part 3: Project - A hands-on tour of KiCad - Schematic Design__________.___. . . 89
1. Introduction to schematic design and objective of this section 90
Design workflows summary________ ??
The finished KiCad project and directory ??
Start Kicad and create anew project. .. ??
1 - Start Eeschema, setup Sheet. ??
2 - Add symbols. ??
3 - Arrange, annotate, associate. ??
A - WL ?7?
5 - NS 2?
6 - The Electrical Rules Check ??
7 - Comments with text and graphies______ . ??
Part 4: Project- A hands-on tour of KiCad - Layout_________.._.___ ... 93
1. Introduction to layout design and objective of this section 94
1 - Start Pcbnew, import footprints__________ . ??
2 - Outline and constraints (edge cut) . ??
3 -Move footprintsin place . ??
4 - Route (add tracks) ??
5 - Refine the outline. ??
6 - Silkscreen (text and graphics) ??

Schematic symbols
PCB key terms

Part 5: Design principles and PCB terms
Introduction

Solder paste and paste stencil

Pick-and-place

Schematic Design Step 1: Setup
Schematic Design Step 2: Symbols

Schematic Design Step 3: AAA (Arrange, Annotate, Associate)

Schematic Design Step 4: Wire

Schematic Design Step 5: Nets

Layout Design Step 1: Setup

Layout Design Step 2: Outline and constraints
Layout Design Step 3: Place footprints

Part 6: PCB design workflows
The KiCad Schematic Design Workflow

??
??
27
??
??
??
??
27
27
27
27
27
27
??
??
??
27
??
??
??
??
??
??
27
27
27
??
??
??
??
27
??
?7?
27
??
27
27
??

Layout Design Step 7: Export & Manufacture

Part 7: Fundamental Kicad how-to: Symbols and Eeschema

Introduction

Top toolbar
Top toolbar Row 1. .
Top toolbar Row 2

Right toolbar

Right toolbar main buttons

Right toolbar - Appearance
Layout editor preferences
Board Setup

Board Setup - Board Stackup___________.____.

Board Setup - Text & Graphics

27
??
??
27
??
?7?
??
??
??
27
??
27
27
??
??
27
27
27
??
??
??
27
27
??
??
??
27
27
??
27
??
??
??

27
??
27
??

Keep-out zones ??

Interactive router ??

Length measuring tools_ . ??

Bulk editing ??

Create a custom footprint, introduction ??

Create a new library and footprint . ??

Create a footprint, 1, Fabricationlayer ??

Create a footprint, 2, Pads . ?

Create a footprint, 3, Courtyard layer .. ??

Create a footprint, 4, Silkscreen layer. ??

Use the new footprint ??

Finding and using a 3D shape for a footprint._________ .. . ?

How to export and test Gerber files . .. ??

Part 9: Project - Design a simple breadboard power supply PCB__________ 96

1. Introduction______ 97

Schematic design editing ??

1 - St Up . ??

2 - SymMbOIS ??

2 - Edit Component values____________ . ??

3 - Arrange, Annotate ??

3 - Associate. ??

A - WG ??

5 & 6 - Nets and Electrical Rules Cheek .~ 2?

7-Comments ??

Layout design editing ??

1 - St Up . ??

2 - Outline and constraints._______ 2?

3 - Place footprints. ??

2 - Refine the outline ??

4 - Route ??

5-Copper fills 7

6 - Silkscreen_____ 2?

7 -Design Rules Check ??

8 - Export and Manufacture ??

Part 10: Project - A4 x 8 x 8 LED matrix array. ... 102

1. Introduction._____ 103

Schematic design. ??
1 - Setup

Schematic design

Schema 1 - Setup

Schema 2 - Symbols

Schema 3 - Arrange, Annotate

Schema 3 - Associate

Schema 4 - Wiring

Schema 5 - Nets

Schema 6 - Electrical Rules Check

Schema 7 - Comments

Schema - Last-minute edits

Layout design

Layout 1 - Setup

Layout 2 - Outline and constraints

Layout 3 - Place components

Layout 2 supplemental - Refine outline

Layout 3 supplemental - Move footprints to back layer
Layout 4 - Route

Layout 4 - Copper fills

Layout 5 - Silkscreen

Layout 6 - Design Rules Check

Layout 7 - Manufacture

Bonus - 3D shapes

Bonus - Found a bug in the schematic! (and fix)

The assembled and working PCB
2 - Symbols
3 - Arrange, Annotate
3 - Associate

3 - Place components
2 - Refine outline

10

27
27
??
27
??
??
??
??
27
27
??
??
??
??
??

4-Route. ..

4 - Copper fills
5 - Silkscreen

Bonus - 3D shapes
Bonus - Found a bug in the schematic! (and fix)

Bonus - 3D shapes

Bonus - Found a bug in the schematic! (and fix)

The assembled and working PCBThe assembled and working PCB
Bonus - Found a bug in the schematic! (and fix)____________.....___ ...
The assembled and working PCBSchematic design

Schema 1 - Setup

Schema 2 - Symbols

Schema 3 - Arrange, Annotate

Schema 3 - Associate

Schema 4 - Wiring

Schema 5 - Nets

Schema 6 - Electrical Rules Check

Schema 7 - Comments

Schema - Last-minute edits

Layout design

Layout 1 - Setup

Layout 2 - Outline and constraints

Layout 3 - Place components

Layout 2 supplemental - Refine outline

Layout 3 supplemental - Move footprints to back layer

Layout 4 - Route

Layout 4 - Copper fills

Layout 5 - Silkscreen

Layout 6 - Design Rules Check

Layout 7 - Manufacture

Bonus - 3D shapes

Bonus - Found a bug in the schematic! (and fix)

The assembled and working PCB

11

27

??
27

??

27

27

27

Schema 3 - Arrange, Annotate
Edit component values
Schema 3 - Associate

Schema 4 - Wiring of sheet 1
Schema 4 - Wiring of sheet 2
Schema 5 - Nets

Layout 1 - Setup
Layout 2 - Outline and constraints
Layout 3 - Place components

Layout 4 - Route
Layout 4 - Copper fills

12

??
??
??
??
27
??
27
??
??
27
??
27
??
27
27
??
??
27
27
??
27
27
??
??
27
??
27
??
27
27
27
27

??
??
??
27
??

Schema 3 - Associate

Schema 4 - Wiring
Schema 5 - Nets and Net Classes

Layout 1 - Setup

Layout 2 - Outline and constraints

Layout 3 - Place components

Layout 2 supplemental - refine outline

Layout 4 - Route

Layout 4 - Copper fills and keep outareas ...

Layout 7 - Manufacture
3D shapes

Find and Replace (Eeschema). .
Edit Text & Graphics Properties

Edit Track & Via Properties (Pcbnew)
Text variables

Board Setup - pre-defined sizes for tracks and vias

Board Setup - Design rules violation severity

Board Setup - Custom design rules
Schematic Setup - Electrical Rules and violation severity

Schematic Setup - Electrical Rules and Pin conflicts map
Field name templates
Bill of Materials

A plug-in for BOM
Import components from Snapeda

13

27
??
27
??
27
27
27
??
??
27
27
??
27
27
??
27
??
??
27
27
27
??
??
??
27
27
??
??
??
??
27
??
??
??
27
27
??
27

The Freerouting autorouter
Install and start FreeRouting on MacOS

Install and start FreeRouting on Linux Kubuntu

Install and start FreeRouting on Windows

How to use the Freerouting autorouter 2-layer example
How to use the Freerouting autorouter 4-layer example

Pcbnew Inspection menu

Single track and differential pair routing

Track length tuning
Differential pair skew tuning

Interactive router modes

The footprint Wizard,
Pin and wire highlighter tool .

Basic Git commands: merge

Sharing your KiCad project on GitHub

Customize the editor color scheme .~

14

Detailed Table of Contents

Introduction, 29
1. WhatisaPCB? 30
2. The PCB design process. 36
3. Fabrication.
4. Get KiCad for your operating system . 43
5. Example KiCad projects. 47
Part 2: Getting started with KiCad 6. . 56
1. Introduction.______ 57
2. KiCad Project Manager (main window) 58
3. Overview of the individual KiCad apps______ ... 64
4. Paths and Libraries._ 72
5. Create a new project from scratch 76
6. Create a new project from a template______________ | 78
7.KiCad 6 on Mac OS, Linux, Windows_______ 82
8. Differences between KiCad6and5 87
Part 3: Project - A hands-on tour of KiCad - Schematic Design__________.___. . . 89
1. Introduction to schematic design and objective of this section 90
Design workflows summary________ ??
The finished KiCad project and directory ??
Start Kicad and create anew project. .. ??
1 - Start Eeschema, setup Sheet. ??
2 - Add symbols. ??
3 - Arrange, annotate, associate. ??
A - WL ?7?
5 - NS 2?
6 - The Electrical Rules Check ??
7 - Comments with text and graphies______ . ??
Part 4: Project- A hands-on tour of KiCad - Layout_________.._.___ ... 93
1. Introduction to layout design and objective of this section 94
1 - Start Pcbnew, import footprints__________ . ??
2 - Outline and constraints (edge cut) . ??
3 -Move footprintsin place . ??
4 - Route (add tracks) ??
5 - Refine the outline. ??
6 - Silkscreen (text and graphics) ??

15

Schematic symbols
PCB key terms

Part 5: Design principles and PCB terms
Introduction

Solder paste and paste stencil

Pick-and-place

Schematic Design Step 1: Setup
Schematic Design Step 2: Symbols

Schematic Design Step 3: AAA (Arrange, Annotate, Associate)

Schematic Design Step 4: Wire

Schematic Design Step 5: Nets

Layout Design Step 1: Setup

Layout Design Step 2: Outline and constraints
Layout Design Step 3: Place footprints

16

Part 6: PCB design workflows
The KiCad Schematic Design Workflow

??
??
27
??
??
??
??
27
27
27
27
27
27
??
??
??
27
??
??
??
??
??
??
27
27
27
??
??
??
??
27
??
?7?
27
??
27
27
??

Layout Design Step 7: Export & Manufacture

Part 7: Fundamental Kicad how-to: Symbols and Eeschema

Introduction

Top toolbar
Top toolbar Row 1. .
Top toolbar Row 2

Right toolbar

Right toolbar main buttons

Right toolbar - Appearance
Layout editor preferences
Board Setup

Board Setup - Board Stackup______________

Board Setup - Text & Graphics

17

27
??
??
27
??
?7?
??
??
??
27
??
27
27
??
??
27
27
27
??
??
??
27
27
??
??
??
27
27
??
27
??
??
??

27
??
27
??

Keep-out zones

Interactive router ??
Length measuring tools_ . ??
Bulk editing ??
Create a custom footprint, introduction ??
Create a new library and footprint . ??
Create a footprint, 1, Fabricationlayer ??
Create a footprint, 2, Pads . ?
Create a footprint, 3, Courtyard layer .. ??
Create a footprint, 4, Silkscreen layer. ??
Use the new footprint ??
Finding and using a 3D shape for a footprint._________ .. . ?
How to export and test Gerber files . .. ??
Part 9: Project - Design a simple breadboard power supply PCB__________ 96
1. Introduction______ 97
Schematic design editing ??
1 - St Up . ??

2 - SymMbOIS ??

2 - Edit Component values____________ . ??

3 - Arrange, Annotate ??

3 - Associate. ??

A - WG ??

5 & 6 - Nets and Electrical Rules Cheek .~ 2?
7-Comments ??
Layout design editing ??
1 - St Up . ??

2 - Outline and constraints._______ 2?

3 - Place footprints. ??

2 - Refine the outline ??

4 - Route ??
5-Copper fills 7

6 - Silkscreen_____ 2?

7 -Design Rules Check ??

8 - Export and Manufacture ??
Part 10: Project - A4 x 8 x 8 LED matrix array. ... 102
1. Introduction._____ 103
Schematic design. ??

1 - Setup

18

Schematic design

Schema 1 - Setup

Schema 2 - Symbols

Schema 3 - Arrange, Annotate

Schema 3 - Associate

Schema 4 - Wiring

Schema 5 - Nets

Schema 6 - Electrical Rules Check

Schema 7 - Comments

Schema - Last-minute edits

Layout design

Layout 1 - Setup

Layout 2 - Outline and constraints

Layout 3 - Place components

Layout 2 supplemental - Refine outline

Layout 3 supplemental - Move footprints to back layer
Layout 4 - Route

Layout 4 - Copper fills

Layout 5 - Silkscreen

Layout 6 - Design Rules Check

Layout 7 - Manufacture

Bonus - 3D shapes

Bonus - Found a bug in the schematic! (and fix)

The assembled and working PCB
2 - Symbols
3 - Arrange, Annotate
3 - Associate

3 - Place components
2 - Refine outline

19

27
27
??
27
??
??
??
??
27
27
??
??
??
??
??

4-Route. ..

4 - Copper fills
5 - Silkscreen

Bonus - 3D shapes
Bonus - Found a bug in the schematic! (and fix)

Bonus - 3D shapes

Bonus - Found a bug in the schematic! (and fix)

The assembled and working PCBThe assembled and working PCB
Bonus - Found a bug in the schematic! (and fix)____________.....___ ...
The assembled and working PCBSchematic design

Schema 1 - Setup

Schema 2 - Symbols

Schema 3 - Arrange, Annotate

Schema 3 - Associate

Schema 4 - Wiring

Schema 5 - Nets

Schema 6 - Electrical Rules Check

Schema 7 - Comments

Schema - Last-minute edits

Layout design

Layout 1 - Setup

Layout 2 - Outline and constraints

Layout 3 - Place components

Layout 2 supplemental - Refine outline

Layout 3 supplemental - Move footprints to back layer

Layout 4 - Route

Layout 4 - Copper fills

Layout 5 - Silkscreen

Layout 6 - Design Rules Check

Layout 7 - Manufacture

Bonus - 3D shapes

Bonus - Found a bug in the schematic! (and fix)

The assembled and working PCB

20

27

??
27

??

27

27

27

Schema 3 - Arrange, Annotate
Edit component values
Schema 3 - Associate

Schema 4 - Wiring of sheet 1
Schema 4 - Wiring of sheet 2
Schema 5 - Nets

Layout 1 - Setup
Layout 2 - Outline and constraints
Layout 3 - Place components

Layout 4 - Route
Layout 4 - Copper fills

21

??
??
??
??
27
??
27
??
??
27
??
27
??
27
27
??
??
27
27
??
27
27
??
??
27
??
27
??
27
27
27
27

??
??
??
27
??

Schema 3 - Associate

Schema 4 - Wiring
Schema 5 - Nets and Net Classes

Layout 1 - Setup

Layout 2 - Outline and constraints

Layout 3 - Place components

Layout 2 supplemental - refine outline

Layout 4 - Route

Layout 4 - Copper fills and keep outareas ...

Layout 7 - Manufacture
3D shapes

Find and Replace (Eeschema). .
Edit Text & Graphics Properties

Edit Track & Via Properties (Pcbnew)
Text variables

Board Setup - pre-defined sizes for tracks and vias

Board Setup - Design rules violation severity

Board Setup - Custom design rules
Schematic Setup - Electrical Rules and violation severity

Schematic Setup - Electrical Rules and Pin conflicts map
Field name templates
Bill of Materials

A plug-in for BOM
Import components from Snapeda

22

27
??
27
??
27
27
27
??
??
27
27
??
27
27
??
27
??
??
27
27
27
??
??
??
27
27
??
??
??
??
27
??
??
??
27
27
??
27

The Freerouting autorouter
Install and start FreeRouting on MacOS

Install and start FreeRouting on Linux Kubuntu

Install and start FreeRouting on Windows

How to use the Freerouting autorouter 2-layer example
How to use the Freerouting autorouter 4-layer example

Pcbnew Inspection menu

Single track and differential pair routing

Track length tuning
Differential pair skew tuning

Interactive router modes

The footprint Wizard,
Pin and wire highlighter tool .

Basic Git commands: merge

Sharing your KiCad project on GitHub

Customize the editor color scheme .~

23

An introduction: Why KiCad?

Since KiCad first appeared in the PCB CAD world in 1992, it has gone
through 6 major versions and evolved into a serious alternative to commercial
products. I have been using KiCad almost daily since version 4 when I
published the first edition of KiCad Like a Pro.

Once thought clunky and barely usable, it is now a solid, reliable CAD
application. KiCad has been consistently closing the feature and performance
gap against its commercial competitors. It has made leaps in adding powerful
features and has significantly improved its stability.

Combined with the benefits of free and open-source software, I believe
that KiCad is simply the best PCB CAD software for most use cases.

One of those benefits is KiCad's very active and growing community of

users and contributors. KiCad has a dedicated developer team, supported by
contributing organizations like CERN, the Raspberry Pi Foundation, Arduino
LLC, and Digi-Key Electronics. The community is also active in contributing
funds to cover development costs. Since joining the Linux Foundation, the
KiCad project has received around $90,000 in donations. The project used this
money to buy development time and funding developer conference travel and
meetups. To a large extent, this alone guarantees that KiCad's development
will accelerate and continue to in the future.

Supporting the KiCad core team is the KiCad community. The
community consists of over 250 thousand people worldwide that have
downloaded a copy. These people support the KiCad project in various ways:
they write code, create and share libraries, and help others learn. They write
documentation, record videos, report bugs, and share hacks. During the
KiCad 6 development cycle, the KiCad repository had around 14600 commits
from the community. Based on this number, KiCad 6 is the most significant
KiCad version ever in terms of changes.

Another signal of the strength of the KiCad community is that KiCad 6
includes completed or nearly completed translations to nearly 20 languages.
No other CAD software that I am aware of can boast this.

PCB manufacturers have also taken notice. Many of them now publish
Kicad-specific tutorials, explaining how to order your boards. Some have
made it possible to upload the KiCad native layout file from your project
instead of generating multiple Gerber files.

And finally, KiCad is part of an expanding CAD ecosystem. You will
find KiCad-compatible component libraries on the Internet's major

24

repositories, such as Snapeda and Octopart, as well as native support in PCB
project version control software for teams, such as CADLAB.io.

KiCad's development and prospects have never been brighter than now.
KiCad's roadmap has exciting new features and capabilities such as grouping
board objects into reusable snippets and a stable Python API.

Why do I use KiCad? Because it is the perfect PCB software for my use
case.

I am an electrical engineer with a background in electronics and
computer engineering. But, above all, I am a technology educator and
electronics hobbyist. The majority of my PCB projects eventually find
themselves in my books and courses. My projects are very similar to those of
other hobbyists in terms of complexity and size. I make things for my Arduino
and Raspberry Pi courses. As a hobbyist, KiCad proved to be the perfect tool
for me.

Your use case may be different. You may be a university student
completing an engineering degree. You may be a hobbyist or solo developer
working in a startup company. You may be part of a team working on
commercial projects that involve highly integrated multi-layer PCBs.

To help you decide whether KiCad is right for you, I have compiled a
list of 12 KiCad Benefits. This list contained ten items in the second edition of
the book. I added the last two items to highlight additional benefits brought
about with KiCad 6.

Here they are:

Benefit 1: KiCad is open source. This is very important, especially as I
spend more time creating new and more complicated boards. Open source, by
definition, means that the code base of the application is available for anyone
to download and compile on their computer. It is why Linux, Apache, and
WordPress essentially run the Internet (all of them open-source). While I am
not extreme in my choices between open source and closed source software,
whenever a no-brainer open-source option does appear, like KiCad, I take it.

Benefit 2: It is free! This is particularly important for hobbyists. CAD
tools can be expensive. This is worsening with most CAD software companies
switching to a subscription-based revenue model. When you are a hobbyist or
student or bootstrapping for a startup, regular fees do add up. Not to mention
that most of us would not be using even half of the features of commercial
CAD software. It is hard to justify spending hundreds of dollars on PCB
software when there is KiCad. This brings me to Benefit 3

25

" ALl

Benefit 3: KiCad is unlimited. There are no "standard", "premium" and
"platinum" versions to choose from. It's a single download, and you get
everything. While there are commercial PCB tools with free licensing for
students or hobbyists, there are always restrictions on things like how many
layers and how big your board can be, what you can do with your board once
you have it, who can manufacture your board, and much more. And there is
always the risk that the vendor may change the deal in the future where you
may have to pay a fee to access your projects. I'll say again: KiCad is
unlimited and forever! This is so important that I choose to pay a yearly
donation to CERN that is higher than the cost of an Autodesk Eagle license to
do my part in helping to maintain this.

Benefit 4: KiCad has awesome features. Features such as interactive
routing, length matching, multi-sheet schematics, configurable rules checker,
and differential routing are professional-grade. While you may not need to
use some of them right away, you will use them eventually. You can add new
features through third-party add-ons. The external autorouter is one example.
The ability to automate workflows and extend capabilities through Python
scripts is another.

Benefit 5: KiCad is continually improved. Especially since CERN &
Society Foundation became involved in their current capacity, I have seen a

very aggressive and successfully implemented roadmap. When I wrote the
first version of this list (August 2018), KiCad 5 was about one month old. The
funding for KiCad 6 was already complete, and the road map living document
was published. Three years later, KiCad 6 was delivered with promises
fulfilled. Now, with KiCad 6 published, the road map for the future looks just
as exciting.

Benefit 6: KiCad's clear separation of schematics and layout is a bonus
to learning and using it. Users of other PCB applications often find this
confusing, but I believe that it is an advantage. Schematic design and layout
design are indeed two different things. Schematic symbols can be associated
with different footprints that depend on the project requirements. You can use
the schematic editor independently of the layout editor or in sync. I often
create schematic diagrams for my courses that I have no intention of
converting into PCBs. I also often create multiple versions of a board using the
same schematic. This separation of roles makes both scenarios easy.

Benefit 7: I can make my boards anywhere: I can upload my project to
any online fabricator that accepts the industry-standard Gerber files; I can

26

upload it to an increasing number of fabricators that accept the native KiCad
layout file; and, of course, I can make them at home using an etching kit.

Benefit 8: KiCad works anywhere. Whether you are a Mac, Windows, or
Linux person, you can use KiCad. I use it on all three platforms. I can take my
KiCad 6 project from the Mac and continue working on Windows 10 without
worrying about any software or project files glitches.

Benefit 9: KiCad is very configurable. You can assign your favorite
keyboard hotkeys and mapping, and together with the mouse customizations,
you can fully adapt it to your preferences. With the additions of the plugin
system and the Python AP], , it will be possible to extend your instance of
KiCad with the exact features you need (or write them).

Benefit 10: If you are interested in creating analog circuits, you will be
happy to know that KiCad ships with SPICE. You can draw the schematic in
Eeschema and then simulate it in SPICE without leaving KiCad. This
integration first appeared in KiCad 5, and it is now a stable feature.

Benefit 11: In the past, KiCad's release cycle was somewhat chaotic.
New major versions would come out every two or three years, but no one
knew ahead of time. In the future, KiCad will operate in a yearly release cycle.
This is good for two reasons: One, commercial users who can now better
predict how the software they depend on will change and when. Two, as
KiCad users, all of us will be able to expect a reliable development schedule
that prioritizes reliability. KiCad is now mature enough to be able to evolve
predictably.

Benefit 12: KiCad is now a serious productivity tool for businesses. 1f
you are an electronics engineer, you can proudly list it in your resume. If you
are using it in your business, you can contract the KiCad Services
Corporation, to customize the software to your exact requirements. I am
talking about deep customization, not just changing the theme and the menu
bars. This means that KiCad can fit precisely with your business. As far as I
know, no commercial CAD application can do that. For the non-business users
among us, we can expect many of these business-led improvements to flow
into future software versions in the tradition of open-source software.

These are the twelve most important reasons I have chosen KiCad as
my tool of choice for designing PCBs. These reasons might not be suitable for
you, but I hope you will consider reading this book first before making your
own decision.

Over the last seven years, I have packed almost everything I have
learned as a KiCad user in this book. I have organized it in a way that will

27

make learning KiCad quick. The objective of this book is to make you
productive by the time you complete the first project, in part four.

If you come from another PCB CAD tool and have experience designing
PCBs, I only ask that you have an open mind. KiCad is most certainly very
different from your current PCB tool. It looks different, and it behaves
differently. It will be easier to learn it if you consciously put aside your
expectations and look at KiCad like a beginner would. As per the Borg in Star
Trek, "resistance is futile”, and in learning, like in so many other aspects of
life, you are better off if you go with the flow.

Let's begin!

28

Introduction

29

1. What is a PCB?

As a child, I remember that my interest in electronics grew from
admiration of what these smart engineers had come up with to curiosity about
how these things worked. This curiosity led me to use an old screwdriver that
my dad had left in a drawer (probably after fixing the hinges on a door) to
open anything electronic with a screw large enough for the screwdriver to fit
in.

A record player, a VCR, a radio; all became my "victims." I am still
amazed that a charged capacitor didn't electrocute me. At least, I had the good
sense to unplug the appliances from the mains. Inside those devices, I found
all sorts of wondrous things: resistors, transformers, integrated circuits, coils,
and power supplies.

Engineers had attached those things on small green boards, like the one

in Figure 1.1.1. This is an example of a printed circuit board, or PCB, for short.
Silkscreen
for markingd
and

Pads for decorations

surface mounted
components

Pads for
through-hole
components

wlrack (or tréce for 4
conngction)

/
Figure 1.1.1: The top side of a printed circuit board.

Let's look at the components of a PCB, what a PCB looks like, and the
terminology that we use. The example PCB is one I made for one of my
courses (Figure 1.1.1).

The top side of the PCB is the side where we place the components. We
can place components on the bottom side, too.

In general, there are two kinds of components: through-hole or surface-
mounted components. We can attach through-hole components on the PCB by
inserting the leads or the pins through small holes and using hot solder to
hold them in place. In the example pictured in Figure 1.1.1, you can see

30

several holes to insert the through-hole component pins. The holes extend
from the top side to the bottom side of the PCB and are plated with a
conductive material. This material is usually tin, or as in the case of the board
in the image, gold. We use solder to attach and secure a component through

Figure 1.1.2: A through-hole component attached to a PCB.

If you wish to attach a surface-mounted component, then instead of
holes, you attach the component onto the surface of the PCB using tin-plated
pads. You will use just enough solder to create a solid connection between the
flat connector of the component and the flat pad on the PCB (Figure 1.1.3).

Figure 1.1.3: A surface-mounted component attached to a PCB.

Next is the silkscreen. We use the silkscreen for adding text and
graphics. The text can provide helpful information about the board and its
components. The graphics can include logos, other decorations, and useful
markings.

31

Figure 1.1.4: The white letters and lines is the silkscreen print on this PCB.

In Figure 1.1.4, you can see here that I've used white boxes to indicate
the location of various components. I've used text to indicate the names of the
various pins, and I've got version numbers up there. It's a good habit to have a
name for the PCB and things of that sort. Silkscreen goes on the top or the
bottom of the PCB.

Sometimes, you may want to secure your PCB onto a surface. To do
that, you can add a mounting hole. Mounting holes are similar to the other
holes in this board, except they don't need to be tinned. You can use a screw
with a nut and bolt on the other side to secure the PCB inside a box.

Next are the tracks. In this example (Figure 1.1.5), they look red because

of the color of the masking chemical used by the manufacturer.
? 1\.\—

Figure 1.1.5: The bright red lines connecting the ho‘le: are tracks.

Tracks are made of copper, and they electrically connect pins or
different parts of the board. You can control the thickness of a track in your
design. You can also refer to a "track” as a "trace."

Notice the small holes that have no pad around them? These are called
'vias." A via looks like a hole but is not used to mount a component. A via is
used to allow a track to continue its route in a different layer. If you're using
PCBs with two or more layers, you can use vias to connect a track from any
one of the layers to any of the other layers. Vias are handy for routing your
tracks around the PCB.

32

The red substance that you see on the PCB is the solder mask. It does a
couple of things. It prevents the copper on the PCB from being oxidized over
time. The oxidization of the copper tracks negatively affects their conductivity.
The solder mask prevents oxidization.

Another thing that the solder mask does is to make it easier to solder by
hand. Because pads can be very close to each other, soldering would be
complicated without the solder mask. The solder mask prevents hot solder
from creating bridges between pads because it prevents it from sticking on the
board (Figure 1.1.6). The solder mask prevents bridges because the solder
cannot bond with it.

Often, the tip of the solder, the soldering iron, is almost as big or
sometimes as bigger than the width of the pads, so creating bridges in those
circumstances is very easy, and a solder mask helps in preventing that from
happening.

In Figure 1.1.7 you can see an example of the standard 1.6mm thick
PCB.

Figure 1.1.7: This PCB has a thickness of 1.6mm, and is made of fiberglass.

Typically, PCBs are made of fiberglass. The typical thickness of the PCB
is 1.6 millimeters. In this closeup view of a PCB picture (Figure 1.1.8), you can
see the holes for the through-hole components. The holes for the through-hole
components are the larger ones along the edge of the PCB. Notice that they are
tined on the inside, electrically connecting the front and back.

33

In Figure 1.1.8, you can see several vias (the small holes) and tracks, the
red solder mask, and the solder mask between the pads. In this closeup, you
can also see the detail of the silkscreens. The white ink is what you use in the
silkscreen to create the text and graphics.

Figure 1.1.9 is interesting because it shows you a way to connect
grounds and VCC pads to large areas of copper, which is called the copper fill.

Thermal

—_ -‘
Figure 1.1.9: Thermal relief connects a pad to a copper region.

In Figure 1.1.9, the arrow points to a short segment of copper that
connects the pad to a large area of copper around it. We refer to this short
segment of copper as a 'thermal relief.' Thermal reliefs make it easier to solder
because the soldering heat won't dissipate into the large copper area.

Figure 1.1.10 gives a different perspective that allows us to appreciate
the thickness of the tracks.

the back end.

34

Notice the short track that connects the two reset holes (RST)? The light
that reflects off the side of the track gives you an idea of the thickness of that
copper, which is covered by the purple solder mask.

In this picture, you can also see a very thin layer of gold that covers the
hole and the pad and fills the inside of the hole. This is how you electrically
have both sides of the hole connected.

Instead of gold plating, you can also use tin plating to reduce
manufacturing costs.

-\‘_

\

Figure 1.1.11: A detail of this example board at 200 times magnification.

The image in Figure 1.1.11 was taken at 200 times magnification. You
can see a track that connects two pads and the light that reflects off one side of
the track.

35

2. The PCB design process

To design a printed circuit board, you have to complete several steps,
make decisions, and iterate until you are satisfied with the result.

A printed circuit board is a physical device that takes time and money
to manufacture. It must be fit to perform its intended purpose, and must be
manufacturable. Therefore, your design must be of high quality, safe, and
possible to manufacture by your chosen manufacturer.

Apart from the practical considerations of designing a PCB, there are
also the aesthetic ones. You want your work to look good, not just to function
well. Designing a PCB, apart from being an engineering discipline, is also a
form of art.

The PCB design process

* Designing a PCB involves:
* Several steps
* Decisions
* lteration
¢ The result should be
« Functional
* High quality

* Manufacturable

¢ Beautiful
Kicad Like a Pro 3e QTech .
txplo.re/kicadr Explorations
Figure 1.2.1: Some considerations of the PCB design process.

In this book, you will learn about the technical elements of designing a
PCB in KiCad, but I am sure that as you start creating your PCBs, your artistic
side will emerge. Over time, your PCB will start to look uniquely yours.

PCB design is concerned with the process of creating the plans for a
printed circuit board. It is different from PCB manufacturing. In PCB design,
you learn about the tools, process, and guidelines useful for creating such
plans.

In PCB manufacturing, on the other hand, you are concerned about the
process of converting the plans of a PCB into the actual PCB.

36

As a designer of printed circuit boards, it is useful to know a few things
about PCB manufacturing, though you surely do not need to be an expert. You
need to know about the capabilities of a PCB manufacturing facility so that
you can ensure that your design does not exceed those capabilities and that
your PCBs are manufacturable.

As a designer, you need to have an understanding of the design
process, and the design tools. To want to design PCB, I assume that you
already have a working knowledge of electronics. Designing a PCB, like much
else in engineering, is a procedural and iterative process that contains a
significant element of personal choice. As you build up your experience and
skills, you will develop your unique designing style and process.

The Kicad design workflow

Eeschema

Symbol editor
Design
Rules Layout design editor Footprint editor

Check

Gerber viewer

Gerber S
Evaluation [N 2°M°2"°" >
Kicad Like a Pro 3e q‘[’ech)
txplo.re/kicadr Explorations

Figure 1.2.2: KiCad is a suite of applications.

BV 5 =
Booc00000

KiCad is not a single application. It is a suite of apps that work together
to help you create printed circuit boards. As a result, it is possible to customise
the PCB design process to suit your particular style and habits.But when you
are just starting up, I think it is helpful to provide a workflow that you can use
as a model.

In Figure 1.2.2 you can see my KiCad PCB design workflow model. You
can use it as it is, or you can modify as you see fit. I distilled this workflow by
drawing from my own experience and learning from other people’s best
practices. I also tried to simplify this process and make it suitable for people
new to PCB design.

In this book, I will be following this PCB design workflow in all of the
projects.

From a very high-level perspective, the PCB design workflow only has
two major steps:

37

1. Step 1 is the schematic design using the schematic design editor
(Eeschema);
2. Step 2 is the layout design using the layout editor (Pcbnew).
Once you have the layout design, you can export it and the
manufacture it.
The goal of the schematic design step is to capture information about
the circuit that will be implemented in the final PCB. Once you have a
schematic design, you can use the layout editor to create a version of the PCB.
Remember, a schematic design can have many different layouts.

The Kicad design workflow

Ch, R4 Di
— ,—

o 0\1’F 330 |C D
o. » éhongt)%xapwﬁ fe

P—;T’_} WL A=
1hed mlwisgas@smw&p@

Se s MOgqIT0aEM L |,
o T RREE L NI T '

Ptz It
~ S

29.4640 mm

Vw7 =
[Bcc o000 o0k -[c

Kicad Like a Pro 3e q ech .
txplo.re/kicadr Explorations

Figure 1.2.3: The KiCad layout file contains information about the physical PCB.

The KiCad layout file contains information about your board, which the
manufacturer can use to create the board. The layout must contain
information about the size and shape of the board; its construction (such as
how many layers it must have); the location of the components on the board,
the location of various board elements, like pads, holes, traces and cutouts; the
features of these elements (such as the sizes of holes and traces); and much
more (which you will learn in detail later in this book).

Let’s walk through through the workflow now using the diagram in Figure
1.2.3 as an aid.
For the discussion that follows, keep in mind these definitions:
e Asymbol is a symbolic representation of a real component in the
schematic; a symbol represents a component's function, not its physical

appearance or location in the final PCB.

38

e Afootprint is a graphical depiction of a real component in the layout. It
relates directly to a real physical counterpart. It contains information
about the real component’s location and dimensions.

In this book, I will be using the terms “symbols” and footprints according to
the definitions above.

In KiCad, the process begins with Eeschema, which is the schematic editor.

In Eeschema you create the electrical schematic that describes the circuit
that eventually will be manufactured into the PCB. You draw the schematic by
selecting symbols from the library and adding them to the schematic sheet. If
a component that you need doesn’t exist in the library, you can search for it on
the Internet, or create yourself with the help of the schematic library editor.

Running regular electrical rules checks helps to detect defects early.
Eeschema has a built-in checker utility for this purpose.

Pcbnew (KiCad's layout editor) has its own validator, the Design Rules
Checker.

These two utilities help to produce PCBs that have a low risk to contain
design or electrical defects.

Before you finish work in Eeschema and continue with the layout, you
must first associate the schematic symbols with layout footprints.

In KiCad 6, many symbols come with preset symbol to footprint
associations, but many don't, so you'll have to do this yourself. Also keep in
mind that, as I said earlier, KiCad is very flexible. It is possible to assign many
different footprints to the same schematic symbol (one at a time, of course).

Once you have completed the Electrical Rules Check and symbol to
footprint associations, you can continue with layout using the KiCad Layout
design editor, or Pcbnew.

You use Pcbnew to position the footprints on the sheet and connect the
footprint pins using wires. You'll also add an outline that marks the outer
limit of the PCB, and other design elements like mounting holes, logos, and
instructional text.

Once you have your PCB laid out and have its traces completed, you can
go ahead and do the design rules check. This check looks for defects in the
board, such as a trace that is too close to a pad or two footprints overlapping.

Let's look at some of the PCB terminology before we continue.

39

The Kicad design workflow

Symbol—

O

V= 2 =
[ooccococ60

Figure 1.2.4: Symbols and footprints.

As you know, a symbol is a symbolic representation of a real component in
the schematic. A footprint is a graphical depiction of a real component in the
layout.

You, as the designer, must tell KiCad which footprint you want to use in
your PCB by associating it to a particular symbol. Take the example of a
resistor. A resistor uses a specific symbol in the schematic, but on the PCB it
can be realized as a through-hole or SMD device of varying sizes.

When you are finished working on the layout, you can continue with the
last step which involves exporting the layout information in a format that is
compatible with your board manufacturer’s requirement.

The industry standard for this is a format called ‘Gerber.” Gerber files
contain several related files, with one Gerber file per layer on your PCB, and
contain instructions that the fabrication house needs to manufacture your
PCB.

Let’s move on to the next chapter where we’ll talk about fabrication.

40

3. Fabrication

Imagine that you have finished laying out your board in KiCad, and
you're ready to make it. What are your options? One option is to make your
PCBs at home. There’s a guide available on the Fritzing website.

The process described in the Fritzing guide is called etching. It involves
the use of various chemicals in chemical baths. Some of these chemicals are
toxic. You have to have special safety equipment and keep your children and
pets away. The process emits smelly and potentially dangerous fumes. Once
you have your board etched, you still need to use a drill to make holes and
vias and then figure out how to connect your top and bottom layers.

If this sounds like not your kind of thing (I'm with you!), then you can
opt for a professional PCB manufacturer service. PCBWay, NextPCB, and OSH

Park are very good at what they offer.

You can get a professionally made PCB for around $15 for several
copies and without danger to yourself as well. I've used OSHPark (great for
beginners thanks to its straightforward user interface) and PCBWay (great for
more advanced projects that need an extensive array of manufacturing
options) extensively. I'm always happy with the result. Using an online
manufacturer takes a little bit of planning because once you order your PCBs,
it can take up to several weeks to be delivered. If you're in a hurry, there are
options to expedite the process if you are willing to pay a premium.

The typical small standard two-layer order costs around $10 for a two
square inch board; you get three copies of that. This price works out to around
$5 per square inch. The pricing is consistent in the industry, where the main
cost factor is the size of the PCB. There is a strong incentive to make your
PCBs as small as possible. Be aware of this when you design your layout.

41

@ 16-LED_gerber [N
Boo =- s :

Name ~ Date Modified Size Kind

16-LED-B_Cu.gbl
16-LED-B_Mask.gbs
16-LED-B_SilkS.gbo
16-LED-Edge Cuts.gm1
16-LED-F_Cu.gtl
16-LED-F_Mask.gts
16-LED-F_SilkS.gto
16-LED.drl

"
e
<

8 items, 49.46 GB available

Figure 3.3.1: An example of the Gerber files that the manufacturer will need in order to make your
PCB.

Now, let’s turn our attention to the files you need to upload for these
services — and the files are Gerber files. Each layer on your PCB has its own
Gerber file, which is simply a text file. Figure 3.3.2 shows the contents of an

example Gerber file.

GO4 #@! TF.FileFunction,Soldermask,Bot#

SFSLAX46Y464%

G04 Gerber Fmt 4.6, Leading zero omitted, Abs format (unit mm)x

G@4 Created by KiCad (PCBNEW (2015-87-86 BZR 5891, Git 351914d)-product) date
03/09/2015 18:22:08%

SMOMMiSs

GO1*

G04 APERTURE LIST*

%ADD10C, 0. 100000+

%ADD11R, 1.727200X2. 032000:+% ¥
%ADD120, 1. 727200X2. 032000:+%
GO4 APERTURE END LIST*

D10

D11
X122555000Y-42545000D03%
D12
X120015000Y-42545000D03%
X117475000Y-42545000D03%
X114935000Y-42545000D03%
X112395000Y-42545000D03*
M2

Figure 3.3.3: Gerber files contain text

You can see that this is just a text-based file that contains instructions.
An advantage of this text format is that you can use a version control system
like Git to maintain your project history and store and share via online
repositories like Github.

Ucamco has designed the Gerber files system and standard. They make
equipment and write software for PCB manufacturers — things like PreCAM
software, PCB CAM, laser photoplotters, and direct imaging systems. If you're
curious about how to read these Gerber files, you can look up the Gerber
format specification on Ucamco’s website.

42

4. Get KiCad for your operating system

It is now time to download your copy of KiCad and install it on your
computer.

Kicad has support for a variety of operating systems. The major
operating systems, Mac OS and Windows, are supported. Of course, there is
support for Ubuntu and a lot of different flavors of Linux. I have tested, and I
frequently use KiCad on Mac OS. Mac OS is my primary operating system,
but I'm also working on Windows and Kubuntu instead of Ubuntu.

Kubuntu is based on Ubuntu in its core but uses the KDE Desktop and
related software. I find Kubuntu to offer a much better experience compared
to Ubuntu. Of course, this is my personal preference, and opinions vary
greatly.

I'm not going to show you how to install KiCad on each one of those
operating systems. The KiCad developer team has refined the installer over
the years. The KiCad installation process on the supported operating systems
is just like that of any other refined application.

mcad BLOG DISCOVER ~ COMMUNITY ~ HELP~ CONTRIBUTE ~ SPONSORS ~ LIBRARIES ~ DOWNLOAD ABOUT ~
T .- T

Home / Download / Windows Downloads

All Platforms
H < Ubuntt
Windows Downloads - vbun
& macOS
KiCad supports Windows 8.1 and 10. See System Requirements for more details. 2 Windows
© Debian
Stable Release ‘
G Flatpak
Current Version: 5.1.10 A Arch Linux
64-bit (recommended) ~ € Fedora
o= openSUSE
Worldwide Linux Mint

® Gentoo
@ FreeBSD

<[> Source Code

Futureware - Austria

Figure 1.4.1: Windows stable release download page.

For example, to get the KiCad installer for Windows, go to the KiCad
Windows page and download the stable version of KiCad from your preferred

source. Double-click on the installer icon and follow the installation wizard

instructions to complete the installation on your computer.

43

mcad BLOG DISCOVER ~ COMMUNITY v HELP v CONTRIBUTE v SPONSORS v LIBRARIES v DOWNLOAD

The nightly build KiCad signature is:

Signer Name KiCad Services Corporation
Issuer Sectigo RSA Code Signing CA
Serial Number 1f70b098b5c21a254a6fh427cdf8893e

Previous Releases
Previous releases should be available for download on:

https://kicad-downloads.s3.cern.ch/index.html?prefix=windows/stable/

Testing Builds

The testing builds are snapshots of the current stable release codebase at a specific time. These
contain the most recent bugfixes that will be included in the next stable release.

https://kicad-downloads.s3.cern.ch/index.html?prefix=windows/testing/5.1/

Nightly Development Builds}!

The nightly development builds are snapshots of the development (master branch) codebase at a
specific time. This codebase is under active development, and while we try our best, may contain
more bugs than usual. New features added to KiCad can be tested in these builds.

|@ These builds may be unstable, and projects edited with these are not usable
\ J with the current stable release. Use at your own risk

https://kicad-downloads.s3.cern.ch/index.html?prefix=windows/nightly/

Figure 1.4.2: Nightly build download

You can download and install the latest available version of KiCad that
is available as a nightly build. Nightly builds are work-in-progress. They
contain the latest code committed by the KiCad developers but are considered
"unstable." Therefore, you should not use it for work that you do not want to
lose. The major operating systems have a nightly build generated (almost)
every night. If you want to look at the cutting-edge version of KiCad and you
are not afraid of weird behaviors and strange crashes, then go to the nightly
releases page for your preferred operating system and download the installer.

Example: Windows.

44

https://kicad-downloads.s3.cern.ch / osx / nightly /

Last Modified Size Key

oA
GB kicad-unified-20210718-154855-4c457b5ed3.dmg
GB kicad-unified-20210719-030141-1clf7ac07e.dmg
GB kicad-unified-20210720-030631-75190370dd.dmg
GB kicad-unified-20210721-155825-0fb864d596 .dmg
GB kicad-unified-20210722-031619-1a301d8eea.dmg
GB kicad-unified-20210722-154659-8d1dd1£8b0.dmg
GB kicad-unified-20210723-154243-3claflaf74.dmg
GB kicad-unified-20210724-031709-3claflaf74.dmg
GB kicad-unified-20210724-155639-728b160719.dmg
GB kicad-unified-20210725-030257-728b160719.dmg
GB kicad-unified-20210725-155531-13a03£77d3.dmg
GB kicad-unified-20210726-154229-8£d83cbb95.dmg
GB kicad-unified-20210727-030638-c946070005.dmg
GB kicad-unified-20210727-154317-43¢cb710297.dmg
GB kicad-unified-20210728-030651-11becc5a68.dmg
GB kicad-unified-20210728-155536-befd30alal.dmg
GB kicad-unified-20210729-030932-46338403e7.dmg
GB kicad-unified-20210729-154718-c716548b29.dmg
GB kicad-unified-20210730-030602-baf6798695.dmg
GB kicad-unified-20210731-030903-9a9a155d67.dmg
GB kicad-unified-20210731-154912-878538abff.dmg
GB kicad-unified-20210801-030923-878538abff.dmg

2021-07-18T23:47:27.451%2
2021-07-19T11:03:08.9642
2021-07-20T11:09:17.7432Z
2021-07-22T00:03:14.3382
2021-07-22T11:27:56.241%Z
2021-07-23T00:08:47.211%Z
2021-07-23T23:46:13.7592
2021-07-24T11:20:29.721%2
2021-07-24T23:57:44.4862
2021-07-25T11:03:46.3122Z
2021-07-25T23:57:21.176%Z
2021-07-26T23:42:57.971%Z
2021-07-27T11:08:39.2062
2021-07-27T23:46:28.141%2
2021-07-28T11:08:28.471%Z
2021-07-29T00:10:00.5702
2021-07-29T11:12:28.102%Z
2021-07-29T23:50:41.678%2
2021-07-30T11:13:19.294z2
2021-07-31T11:21:37.8942
2021-07-31T23:52:59.6592
2021-08-01T11:10:37.5432

PRRRRRRPRRPRPRRRERRERRERRERRRRRRRERR
WEPWALWLWWWWLWWUWAWWWWWWSWW

Figure 1.4.3: Nightly build download

If you're working on Mac OS, go to the Mac OS downloads page and

download the latest available stable release. You can also download a nightly

build if you are comfortable with the inherent risk. Both stable and nightly
builds come as a regular DMG file. The download file contains the entire
KiCad suite with all its applications, the documentation, and the libraries for
the schematic symbols, footprints, and templates. It also includes several
demos projects.

The installation process makes use of Ubuntu's apt-get system. For
Ubuntu, you can find installations instructions on the Ubuntu page. For using
nightly development builds in Ubuntu, you will find instructions on the same
page.

There is there are similar instructions for the various other operating

systems like Suse and Fedora.
You also have the option to download the source code and build from

the source on your operating system. This is not something that I usually do
unless I want to play around with it and experiment. Luckily, the operating
systems I use or have excellent binary builds, so I never needed to build my
KiCad instance from the source. But if you are someone who enjoys doing
that, then go to the source code page and follow the detailed instructions.

At this point, I invite you to download the version of KiCad that is
suitable for your operating system and install KiCad on your computer. Once
you finish installing KiCad, verify that it's up and running by starting KiCad.

45

In the next chapter, you will use your brand new instance of KiCad to
look at some of the demo projects that ship with KiCad.

46

5. Example KiCad projects

Now that you have installed your instance of KiCad let's start your
familiarisation with it by looking at one of the examples that come with it.
Browse to the KiCad demos folder, and download the one titled
'pic_programmer' (Figure 1.5.1). You can also download the entire “demos”

folder if you wish.
A

Name Last commit Last update
& libs Update demos 2 months ago
% fp-lib-table Update env vars in demos 10 months ago
[3 pic_programmer.kicad_pcb Update demos 2 months ago
3 pic_programmer.kicad_pro Update demos 2 months ago
[3 pic_programmer.kicad_sch Update demos 2 months ago
[% pic_sockets.kicad_sch Update demos 2 months ago
[sym-lib-table Update demos 1year ago

Figure 1.5.1: The contents of the 'pic_programmer' demo project folder.

The demo project folder contains several files that make up the project.
For now, the ones to focus on have the extensions' kicad_pro,' 'kicad_pcb' and
'kicad_sch.' The file with the 'kicad_pro' extension contains project
information. The 'kicad_pcb' file contains layout information. The files with
the 'kicad_sch' extension contain schematic information. There are two
'kicad_sch' files because this project includes two schematics.

Double-click on the 'kicad_pro' (project) file. The main KiCad window
will appear. This window is the launchpad for the other KiCad apps, like
Eeschema (the schematic editor) and Pcbnew (the layout editor). You can see
the main KiCad window in Figure 1.5.2.

47

@ KiCad File View Tools Preferences Help Window
® [J pic_programmer — KiCad

Project Files

Schematic Editor

E pic_programmer.kicad_pro 4 - .
Edit the project schematic

B iibs
. pic_programmer.kicad_pcb

pic_programmer.kicad_sch

Symbol Editor
Edit global and/or project schematic symbol libraries

PCB Editor
Edit the project PCB design

a2 Vs P

Footprint Editor
Edit global and/or project PCB footprint libraries

Gerber Viewer
Preview Gerber files

Image Converter
Convert bitmap images to schematic symbols or PCB footprints

Calculator Tools
Show tools for calculating resistance, current capacity, etc.

Drawing Sheet Editor
Edit drawing sheet borders and title blocks for use in schematics and PCB designs

SR GEBY

Project: / D/Kicad Projects...c_p ic_pr kicad_pro
s

Figure 1.5.2: The main KiCad window.

Let's explore the schematic of this demo project. The main KiCad
window shows the project files in the left pane, the various app buttons in the
top-right pane, and various status messages in the bottom right pane. In the
right pane, click on the Schematic Editor button. This button will start the
Eeschema application, the schematic layout editor. You should see the editor
as in the example in Figure 1.5.3.

4

- D ———

A& DD JE T SACRORONCRON =) LA A RRE ERSEI RS
s R
o f
= >
£ = Bl = +
* ;*?l 7/
v - e s
L= @ el L -

B x B
\ : > e
, | .
P ii D &, o - A
g @y =
b 7 |

Q o A T
s B B
i] VPP (13V) power X
Xs 3 — e
pe-crock—our g LT o . £ CLOCK-RBS,
T e AT
1 W
! |
] 1
| 5 =
| o
iy
=2 T
>_sockets kicad_sch" saved. 2134 X132.08 ¥ -2.54 @x132.08 dy -2.54 dist 13210 orid 254 ‘mm

Figure 1.5.3: The schematic editor.

48

A few things are going on here. At first, this window might seem
overwhelming. Don't worry about the various buttons and menus;
concentrate on the schematic itself. Look at the various symbols, like those for
the diodes, the transistors, and the operational amplifiers. There are symbols
for resistors, and connectors, with green lines connecting their pins. Notice
how text labels give names to the symbols but also the wirings between pins.
Notice how even the mounting holes at the bottom right side of the schematic
have names. Even though these mounting holes are not electrically active,
they are depicted in the schematic. The values of the capacitors and resistors
are noted, and any pins that are not connected to other pins are marked with
an 'x's.

There is a rectangular symbol on the right side of the schematic with the
title "pic_sockets' (Figure 1.5.4).

Double click on it. What happened?

=
a
A

AUMPER
O—o
N

i S

pic_sockets

2

. VeC_PIC

£

g VPP/MCLR LVRP-MCLR
DATA-RB7 AT e
CLOCK=RBE CLOCK-RB6

File: pic_sockets.kicad_sch

T VPP (13V) power

Figure 1.5.4: A link to another sheet.

This symbol links to another sheet, which contains additional symbols
that are part of the same schematic. It looks like the example in Figure 1.5.5.

49

ese pic_sockets [pic_programmer/pic_sockets/] —Schemat

A& Do/ D Bh CRACAAET 22> A RRE HHEDSE S

P+ BRI

;;;;;;;;;;;

T @GP P+ UNNGEY F

FR-x

s

Kiad

Title: JOM ~ COM84 PIC Programmer with 13V DC/DC converter
W e 3

2 x30226 Y284 930226 0y 254 dist 3022

Figure 1.5.5: KiCad'’s schematics can span over multiple sheets.

KiCad's schematics can span over multiple sheets. Add more if your
schematic is too large to fit in one sheet comfortably (you will learn how to do
this in this book).

I encourage you to spend a bit of time studying this schematic. You can
learn a lot about drawing good schematic diagrams by studying good
schematic diagrams, just like you can learn programming by studying good
open-source code.

Go back to the main KiCad window. Click on the button labeled "PCB
Editor." This will launch Pcbnew, the layout editor. The window that appears
will look like the example in Figure 1.5.6.

50

pic_programmer — PCB Editor

ene
AR 0Dem BHTAQRAR N & 6o (d B 28 o Mo e o -HE S

senetclass width @ =) | Via: use netclass sizes Grid: 0.0254 mm (0.0010 in) B omate B

Appearance

Layers Objects Nets

00000 400000000]

[08000000c000l0n

|

[IFTSPHEAYOODNN 2R

O (o
o o
o o
o o
o o
o o
() o
o o
o O
o o
o o
(o] o
o o
o o
o o
o o
o o
o o
o o
o o

1_peb san 70 9x239.8014 ay 59.8170 st 247 94X 00254 mm Y0054 mm mm

Figure 1.1.5.6: Pcbnew, the layout editor.

Again, don't worry about the various buttons and menus; concentrate
on the layout inside the sheet. Use your mouse's scroll wheel to zoom in and
out and the Alt+right mouse button to pan (you should also be able to pan by
holding down the middle mouse button). Zoom in and look at some of the
layout details, such as the pads, how they are connected to traces, the names
that appear on the pads and traces, and the colors of the front copper and back
copper layer traces. Note: in Linux, panning is done with the middle mouse
button, and the alt key is not used.

Also, compare how a footprint in the layout compares to the symbol in
the schematic. You can see a side-by-side comparison in Figure 1.5.7.

v i

"
2
lao)a
Ld
(o]
K
Ll
K
LJ
3

PC—DATA=IN

7~ \PL01
I/) CONN_1 |

)=

O JI' i

e, ;;i:

Figure 1.5.7: A side-by-side comparison of a footprint (left) and its schematic symbol (right).

51

Associated symbols and footprints have the same designator (J1, in this
example) and the same number of pins. The layout shows the traces that
correspond to the wires in the schematic.

Everything you see here is configurable: the width of the traces, which
layer they belong to, the shape, size, and configuration of the pads. You will
learn all of this in this book. In the layout, zoom in on the J1 connector to see
one of its details: the name of the trace that connects pad 7 of J1 to pad 1 of R5.
Traces, like everything else in KiCad, have names. The names of everything
that you see in Pcbnew are defined (manually or automatically) in Eeschema.

Net- (R8-Pad1)

PC-DATA-IN

Net-(D6-Pad2)
Net- (R8-Padl)

~
°
@
a
<
=
=
o
Q9

Figure 1.5.8: Traces have names.

Try one more thing: In Pcbnew, click on the View menu and choose the
3D Viewer. The 3D Viewer will show you a three-dimensional rendering of the
PCB, with remarkable detail. You can zoom in and turn the board around to
see it from any angle you want (Figure 1.5.9). Many components are
populated, like the LED, resistors, and some of the integrated circuits. For the
rest, you can still see their pads and outlines on the board.

52

[] ® 3D Viewer

B R CRa@ ki 22 W et) @ L=

| Last render time 15 ms dx 0.00 dy 0.00

Figure 1.5.9: The 3D viewer will give you a realistic rendering of your board that you can examine in
3D.

As with the schematic editor, I encourage you to spend a bit of time
studying the layout of this demo project. Later in this book, you will learn
about the most important layout guidelines that will help you design well-
functioning and elegant PCBs.

Apart from the demo projects that KiCad ships with, you should also
look at some of the very impressive showcased projects of boards “made with
KiCad”. For example, the CSEduino is a 2-layer PCB that contains an
Atmega328P microcontroller and implements a simple Arduino clone. You
will be able to easily create a board like this by the time you finish this book.
Go to txplo.re/madewkicad for more examples of projects made with KiCad.

53

| : 48,260 mm ; |

3y
&)
o
o
S
3

3

CSEduino 4.0 — 2—Layer PCB
by Jodo Alves (jpralves@gmail.com)

Figure 1.5.10: Featured board 'Made with KiCad'": CSEduino.

Another featured board is Anavi Light, a HAT board for the Raspberry
Pi. This is also a 2-layer board that allows you to control a 12V LED strip and
get readings from sensors.

Figure 1.5.11: Featured board 'Made with KiCad'": Anavi Light.

Finally, a truly impressive board made with KiCad is Crazyflie (Figure
1.5.12). Crazyflie is a dense 4-layer PCB with a rather elaborate shape. The
board implements the flight controller of a tiny drone. The shape is

54

specifically designed to implement the drone's body and arms. You will also
learn how to create PCBs with complicated shapes in this book.

Figure 1.5.12: Featured board 'Made with KiCad': Crazyflie.

With this chapter complete, you should now understand the kinds of
projects that people use KiCad. These are also the kinds of boards that you
will design by the time you complete this book. Let's get straight into the first
project so that you can start discovering this fantastic tool by doing.

55

Part 2: Getting started with KiCad 6

56

1. Introduction

Welcome to Part 2 of this book.

In the chapters of this Part, I will give you a brief overview of KiCad 6.
This overview will help you with the first hands-on activity of this course, in
which you will create your first PCB in the chapters of the following two
Parts.

Ensure that you have installed KiCad on your computer so that you can
follow along. If you haven't done so yet, please go back to chapter "4. Get
KiCad for your operating system," where I provide information on installing
KiCad on Mac OS, Windows, and Linux.

In the following chapters, I will introduce the individual apps that
make up the KiCad software suite. I will also explain the roles of paths to the
symbol, footprint, 3D model, and template libraries, show you how to create a
new project from scratch and a template.

I will also compare KiCad 6 as it runs on the three supported platforms.
If you have experience with KiCad 5, read the relevant chapter at the end of
this Part.

Let's continue with the following chapter, where I'll give you an
overview of KiCad's core apps.

57

2. KiCad Project Manager (main window)
This chapter will give you an overview of the KiCad project manager,

otherwise known as the "main" KiCad window.

MCU Datalogger — KiCad

E Project Files
E MCU Datalogger.kicad_pro Schematic Editor

Edit the project schematic

¢
"

. MCU Datalogger-backups

- 2_layer_MCU_Datalogger_Gerbers Symbol Editor

. 2l jayeraMCUlDataloggeriGerbers Edit global and/or project schematic symbol libraries

B Graphics i

PCB Editor
. Libraries Edit the project PCB design
' MCU Datalogger.kicad_pcb

.é‘ MCU Datalogger.kicad_sch Footprint Editor

Edit global and/or project PCB footprint libraries

80 «a

E Gerber Viewer
I1 Preview Gerber files
S Image Converter
i Convert bitmap images to schematic symbols or PCB footprints

* = Ccalculator Tools
x Show tools for calculating resistance, current capacity, etc.

a Drawing Sheet Editor
e Edit drawing sheet borders and title blocks for use in schematics and PCB designs

Figure 2.2.1: The KiCad Project Manager window.

This is the window that you will see first when you start KiCad. The
project manager gives you access to the various KiCad applications, like the
schematic and symbol editors, and shows you the project files.

The main window contains:

o Atoolbar on the left.
o The project files are in the middle.
o The application buttons are on the right side.

The left toolbar has buttons to create a new project or open an existing
project and archive /unarchive.

The middle pane shows the project files and folders. This is essentially a
file browser that gives you access to the individual files and folders inside the
main KiCad project directory.

The right pane contains buttons for the individual applications. Say that
you want to start the schematic editor. You can do this in three ways:

1. Double-click on the file with the extension "kicad_sch" in the middle
pane (file browser).
2. Click on the Schematic Editor button in the right pane.

58

3. Click on "Schematic Editor" under Tools in the top menu (see below).

KiCad File View @ Tools Preferences Help Window

!- Schematic Editor
.. P> symbol Eait
Project Files ‘ G gl ey I

Gerber Viewer
Preview Gerber files

Image Converter
Convert bitmap images to schematic symbols or PCB footprints

E E Mmcl ' PCB Editor 5 Schematic Editor
E - Edit the project schematic
v m Footprint Editor
. [E3) Symbol Editor
. 4 QE Gerber Viewer Edit global and/or project schematic symbol libraries
l’i . G _‘ Image Converter)
EE PCB Editor
C . Li m= Calculator Tools Edit the project PCB design
. M Drawing Sheet Editor
[) _é_m Footprint Editor
. EditilocalFilen Edit global and/or project PCB footprint libraries
,&'{
-
4

[|
Figure 2.2.2: Starting the Schematic editor.

If you create a new directory via your operating system's file manager
or create a new file, the middle pane will display those items. Remember that
a KiCad project will contain files that KiCad creates and files created by other
tools, like the Autorouting autorouter and Git. You will learn about the core
files in KiCad later in this book.

You will learn about the buttons in the right pane in the next chapter.

First, let's do a tour of the items in the top menu bar.

File View Tools Preferences Help Window

About KiCad

Preferences... 3, l—
Services > atalogger.kicad_pro Schematic Editor
- = Edit the project schematic
Hide KiCad 521 Datalogger-backups
Hide Others U398+ 2r_MCU_Datalogger_Gerbers Symbol Editor
Show All er_MCU_Datalogger_Gerbers Edit global and/or project schematic symbol libraries

it Ki lics
Quit KiCad #¥Q PCB Editor
S "> | Libraries Edit the project PCB design

. MCU Datalogger.kicad_pcb
m _é" MCU Datalogger.kicad_sch
[& 1 =R

Figure 2.2.3: The top menu bar in KiCad.

Footprint Editor
Edit global and/or project PCB footprint libraries

To get information about your instance of KiCad, click on "About KiCad"
under the KiCad menu item. You will need to use the information provided in
this window if you have found a bug and wish to report it to the development
team.

59

et P design &) Gitlab = menu

< 7 @« K New
) About KiCad o
and
Kicad
O Newlssue

(€)1992-2021 KiCad Develoy o
e @
o | Version: (5.99.0-11435-025264769: - B
wxWidgets 315 Unicode and Boost 1.76.0 Titl
Platform: mac -0S Version 1016 (Build 20680), 64 bit o
w
tmag = " e
Dot OVersi. LXDeve.. (ZDoc.. Wilibra. eDAdists TaTrans.. @Pack. Type ue <
T "‘ KiCad Librarian Team:
for P Description Wit BIN®GESEEEDE.
- Christian Schiiter g
she @
wst ssue has not already been re
@
=]
[ent behavior and what is the expected behavior? —>
creenshots if they will help explain the probles. —->
]
X # Steps to rep
G <!=- Plea ude screen recording if it will help explain how to reproduce. —->
<!-— If this issue is specific to a project, please attach it. -->
-
3¢
o<] £ xLEed N

Application: KiCad

Figure 2.2.4: Report a bug.

To report a bug, open the About KiCad window, and click "Report
Bug" (see "1" above). This will use your web browser to open the New Issue
page in Gitlab. You will need to include your KiCad instance version
information, which you can get from the About KiCad window (2", above).

Also, from the KiCad menu item, you can bring up the Preferences

window.
V'O Preferences
A

~ ; Editing
Auto save: 5 T minutes

Hotkeys File history size: 9 2 Warp mouse to origin of moved object
{4 First hotkey selects tool

Mouse and Touchpad

3D cache file duration: 30 C Days
Accelerated graphics: ~ Fast Antialiasing (] Project Backup

Helper Applications Automatically backup projects

Create backups when auto save occurs
Text editor: /Applications/Atom.app]

Maximum backups to keep: 25 S
© System default PDF viewer Maximum backups per day: 5 S
Other: Minimum time between backups: 5 Z minutes
Maximum total backup size: 100 s MB
User Interface
A Session
Icon scale: Automatic
50 100 275 Remember open files for next project launch
Canvas scale: 2.0 2 Automatic

Show icons in menus

Icon theme:
O Light Dark Automatic

Reset to Defaults cancel | (D
Figure 2.2.5: The KiCad Preferences window.

In the Preferences window contains several tabs with widgets that allow
you to customize KiCad. Exactly what you see here depends on which
applications are open. In the example above, only the main KiCad project
window is open. The right pane would contain additional items if Eeschema
or Pcbnew were also open. You can learn about the details in dedicated
chapters later in this book (Eeschema, and Pcbnew).

Under the File menu, you see the standard options for file and project

management. You can open/ close a project, create a new project, archive/

60

unarchive a project, and import non-KiCad projects. You will find some of

those options as buttons in the right toolbar of the main KiCad window.

e View Tools Preferences Help Window

E New Project...

e New Project from Template... E
i E e A e 5 Schematic Editor
a @ Open Recent > - Edit the project schematic
i| I, CloseProject Symbol Editor

B Edit global and/or project scheme
: ﬂ. Save As...
2 PCB Editor

N " Edit the project PCB design
~ 5 Import Non-KiCad Project... >
. o o Footprint Editor
[el ElRoiecs m Edit global and/or project PCB fou

% Unarchive Project...

gE Gerber Viewer
Praviaw Garher filae

Figure 2.2.6: The KiCad File menu.

You will be using those options in the projects through this book. In the
Recipes part of this book, you can learn how to import a non-KiCad project,
and how to archive/unarchive.

Under View, you can use a text editor to view any of KiCad's project files.
You can define your preferred text editor in the Preference window in the
Common tab. Below you can see an example of a KiCad schematic file loaded

in the Atom text editor.

ymk _

litg o > @ 3= Mcu Datal kicad_sch — ~/D [Kicad/Course devel d /[KiCad Like a Pro 3e Projects/MCU Datalogger
B info.html % [Q MCuU Datalogger.kicad_... X
;ﬁ . (on_board yes)
15 (property "Reference" "U4" (id @) (at 0 33.02 0)
x; 16 (effects (font (size 1.27 1.27)))
17)
18 (property "Value" "ATMEGA328P-AU" (id 1) (at © 30.48 0)
4 19 (effects (font (size 1.27 1.27)))
1ag 20)
2 (property "Footprint" "Footprints:QFP80P900X900X120-32N" (id 2) (at @ 0 0)
| 22 (effects (font (size 1.27 1.27)) (justify left bottom) hide)
ow, 23)
24 (property "Datasheet" "" (id 3)I(at 0 0 0)
25 (effects (font (size 1.27 1.27)) (justify left bottom) hide)
26)
27 (property "MANUFACTURER" "Atmel" (id 4) (at @0 0 0)
28 (effects (font (size 1.27 1.27)) (justify left bottom) hide)
29)
30 (property "ki_locked" "" (id 5) (at @ @ @)
31 (effects (font (size 1.27 1.27)))
32)
33 (symbol "ATMEGA328P-AU_0_0"
34 (rectangle (start -10.16 -27.94) (end 10.16 27.94)
e ourse : : iCad ot = ‘u}); — LF‘ UTF-8 Plain Text 1 4|aye>r> -(.) Publish () GitHub < Git (1) [5updates 3

Figure 2.2.7: A schematic design file in a text editor.

All KiCad files are text files, and as such, you can open them in a text
editor. It is also possible to programmatically edit those files using automation

61

implemented in a language like Python directly, without needing an APL
Beware, though: modifying these files by hand or programmatically without
knowing precisely what you are doing will most likely damage your KiCad
project. Always back up your work before any such experimentation!

The Tools dropdown menu gives you access to the individual apps in the
KiCad software suite. The items in this menu replicate the application buttons

in the right pane of the KiCad main window.

View = Tools Preferences Help Window

A MCU Dataloggel
> symbol Editor b
tFiles | H

= MC . PCB Editor Schematic Editor
- Edit the project schematic

- M m Footprint Editor ‘ =
-
[

. G ‘ Image Converter
| mm T PQB Edltor)
- Li mm Lalculator lools Edit the project PCB design

Symbol Editor

Edit global and/or project schematic symbol libraries

qa Gerber Viewer

l M Drawing Sheet Editor
Edit Local File...

Footprint Editor
Edit global and/or project PCB footprint libraries

E Gerber Viewer
Preview Gerber files

s Image Converter
4 Convert bitmap images to schematic symbols or PCB footprints

% = calculator Tools
I x ‘ Show tools for calculating resistance, current capacity, etc.

Drawing Sheet Editor
Edit drawing sheet borders and title blocks for use in schematics and PCB designs

Figure 2.2.8: The Tools menu items.

I will describe these applications in the next chapter.

Under Preferences (not to be confused with the Preferences window
under "KiCad"), you can access the Paths, Symbol Libraries, and Footprint
Libraries manager windows.

62

View Tools | Prefefences Help Window

4-'}) Configure Paths...

; 1 ii%, Manage Symbol Libraries...
act Files =
E MCU Datalog ii%, Manage Footprint Libraries... Schematic Editor
e Edit the project schematic

MCU Datal¢
. -{A Set Language

BB 2_tayer MC _ . Symbol Editor
. 4 layer MC UL DataloggeriGerbers Edit global and/or project schematic symbol libraries
BB craphics .
PCB Editor
. Libraries Edit the project PCB design

' MCU Datalogger.kicad_pcb
_é‘ MCU Datalogger.kicad_sch

Footprint Editor
Edit global and/or project PCB footprint libraries

TEEY.

Gerber Viewer
Figure 2.2.9: The Preferences menu.

I have written a dedicated chapter on these manager windows with
details later in this Part of the book.

Finally, the help menu. It allows you to access a local copy of the official
KiCad documentation, which opens in your browser, and a window that
contains a list of hotkeys. Be mindful that this documentation may be old.
When I am writing this, this documentation has not been updated since
KiCad 5.0.0-rc2, and most of the links are not working.

The Hotkeys window, apart from listing current hotkeys, allows you to
make changes. I prefer to keep the default hotkeys unless there is a conflict
with other applications running on my computer.

This was an overview of the main KiCad window, the KiCad project
manager. In the next chapter, you will learn about the individual applications
that make up the KiCad software suite.

63

3. Overview of the individual KiCad apps

In the previous chapter, you learned about the KiCad Project Manager. This
chapter will give you a tour of the individual applications that make up the
KiCad software suite.

As you may recall from the previous chapter, you can access the KiCad
applications via the project manager’s right pane or the Tools menu. To open
Eeschema or Pcbnew, you can also double-click on the schematic and layout
files listed on the middle page of the project manager.

Let’s take a closer look at each of the KiCad applications.

Schematic editor: Eeschema
Click on the Schematic Editor button to open the application. You can see

the editor window below.

uuuuuuuuuuu [MCU Datalogger/] — Schematic Editor

A& D6A O P4%CQRARAAIET 2 2> A RBE BosED B E
i x
= T T LT.’
- B
= i
3 = 7
¢
AAAAAA
s vee - - . S|
> L4 I
i - B
- 3
:l!f - 220F AO
—
ey | BB
R - | 8
& J! & & =
la | T
— ™
L)
ceproM <
m%’_—q—‘»,»so: m m i

Figure 2.3.1: Eeschema, or the Schematic Editor.

You use Eeschema to draw the schematic of the PCB. Although KiCad is
flexible enough and allows you to create PCBs without a schematic, this is
rarely a good idea. The schematic diagram captures all necessary information

that the layout editor uses: components (as symbols), wires that connect pins,

64

nets, and various kinds of netlabels, busses, power nets, and much more.
Eeschema is the first KiCad application you will use when you start a new
KiCad project.

In the example above, you can see a schematic from one of the projects in
this book. You can see the symbols (such as U2, R1, and R2), green wires
connecting pins, special symbols representing unconnected pins and power
nets, and other elements like graphics and text labels.

You can learn how to use and configure the schematic editor in a dedicated
Part of this book.

Layout editor: Pcbnew

Once you have completed work in Eesceham, you will continue with the
Layout editor, or “Pcbnew.” To open Pcbnew, you can click on the Pcbnew
button in the KiCad project manager or the Pcbnew button in the top toolbar
of Eesceham. Below you can see an example instance of Pcbnew.

MCU Datalogger — PCB Editor

- , T —— —
AB DM ATRQRAR T (2B 3o Eecurun M+ &
Track: use netclass width @ | | Via: use netclass sizes © Gid:25400mm (01000in) @ | ZoomAwo @

nnnnnnnnnn

AR R A N

X O

22pF C5100nFD’L5l’ DI1§0Y4 ICSP
i 1sg0(tss 58 @0

N

‘>’ i L ()
mn&isg;_i‘f_ =T »%%Lg@

= U2) 24LC1029 T —'I; 5 VAo ’ﬁ
i CK 0S|
§ e — I | 7Recer Sud
H - e be i) —
s R k<

I \ 3

o (@) Qe 1)
=R

16 MRz 54 0.1uF
7 8 /GND VCC)3GNDV(. RX 1R.S

AF TS HAYOONN zh

o SCK SDAYCC

124.4600 ¥ 1016000 124.4600 dy 101.6000 dist 16 06638 rid X 25400 mm ¥25400mm mm

Figure 2.3.2: Pcbnew or the Layout Editor.

In the example above, you can see the finished PCB design from one of
the projects in this book. The layout editor allows you to select the layers and
design elements you want to see. For example, you can enable or disable the
visibility of layers, footprints, tracks, zones, and vias. In the example above, I
have enabled the visibility of all layers and elements and an outline of the top
and bottom copper zones.

65

The layout editor includes various sophisticated tools, such as an
interactive router and a 3D viewer. You can see a 3D rendering of the PCB
from Figure Figure 2.3.2 below:

3D Viewer

L]
BROCRAQ K% L 22 W et @

By By Il gy gy

F e Ciﬁ?““'zzw €5100nFDZLED DILED ™
r.
- it ap =
241C . -
Lo] ; R7 330 R5330
b a_p
R4 4. 7K R6 10K

i p —

- - i1
111 R3 4‘7K;13(‘gspvcc [=
_ATMEGA328P—AUfmln RESETI o ™

JCC
[

SDA!
[]

< N SCK
20

%

=

3

Figure 2.3.3: The 3D viewer in Pcbnew.

You can learn how to use and configure the layout editor in a dedicated
Part of this book.

Symbol Editor

Let’s continue with the Symbol Editor. You can open this application from
the KiCad Project Manager or the top toolbar of Eeschema.

66

[no symbol loaded] — Symbol Editor

caaee °

AD637xRZ

(o
+VS 1—3€Power inpwy

CAV Q@Passive

o
Aossons 5

A0637Q Inpute=— CS

o RMS_oUT Llooutput
e ioputSEVING 4.6 WD ENay B LT olmgut
ggg%ﬁ%ﬁ dB_OUTPUT lePassive
= inputet{ OUTPUT_OFFSET

EGE;.%::Z L€ BUFF_IN iéJInpu'c

PGATI3
Analog_ADC
Analog_DAC
Analog_Switch
ArduinoProMiniSimple
ATMEGA328P-AU
Audio
Battery_Management

BUFF_OUT & output

ower mputGi CO
ower input@Q -VS

2521 X-508 Y000 dx-508 dy 0.00 dist 5.08 orid 127 mm

Figure 2.3.4: The Symbol Editor.

With the Symbol Editor, you can modify existing symbols or create new
ones. You can think of the Symbol Editor as a simplified version of the
schematic editor. In the Symbol Editor, you can work with a single symbol at a
time.

KiCad 6 comes with an extensive set of symbol and footprint libraries.
There are also thousands of third-party symbols and footprints that you can
import. However, you will eventually need to create a symbol, and that’s
when the Symbol Editor comes in.

You can learn how to create new symbols from scratch later in this book.

Footprint editor
Similar to the symbol editor, there is also the footprint editor. You can open

the footprint editor from the KiCad project window or the Pcbnew top toolbar.

67

] =Y cRAAQA S 2

>
3
H

d-e1M¥M OO\
un

’ 000000000000600000000000000000

Gauge_10mm_Type3_CopperTop

[<J<I<TT<T N I
[T

Figure 2.3.5: The Footprint Editor.

With the footprint editor, you can create a footprint from scratch or
modify an existing footprint. The footprint editor also contains a wizard that
allows you to quickly generate footprints that follow convention, such as

those that use BGA, QFN, DIP and SOIC, packages.
You can learn how to use the footprint editor in a dedicated chapter.

Gerber Viewer

When you have completed work on your PCB and wish to order it from an
online manufacturer, the most common way is to export a set of Gerber files
from Pcbnew. Before you upload those files to your preferred manufacturer,
you should take the time to inspect them. KiCad has a tool for this: the Gerber

Gerber Viewer
BCRB A R ® Worphiclayera v Drawing layer 14 not in use
Cmp: <No selection> @) Net: <Noselection> @ Attr: <No selection> @ DCode: Grid: 0.6350 mm (0.0250in) @ | ZoomAuto

Layers Manager

I (% 1 MCU...pper, L1)
2 2 MCU...TH,Dril)

3 3 MCU...TH,Dril)
4MCU..file, NP)

5 MCU...sk, Bot)

6 MCU...5k, Top)

7 MCU...nd, Bot)
8MCU..nd, Top)

9 MCU...ste, Bot)

10 MCU..te, Top)
@) 11 MCU...per, L4)
Rz v pe 19

13 MCU...per, L2)

» B) Graphic layer 14
. Gr 1
16
”
18
19

2533 X142.8750 Y 749300 dx142.8750 dy 74.9300 dist 161.3312 qrid X 0.6350 mm Y 0.6350 mm mm

Figure 2.3.6: The Gerber Viewer.

68

With the Gerber Viewer, you can examine the project Gerber files
visually, layer by layer. This way, you can ensure that all its elements are
correct. Silkscreen text and graphics, drills, copper fills, the board outline, and
cutouts, etc.

Think of the Gerber Viewer as a quality control tool. Use it to reduce or
eliminate the risk of ordering a defective PCB.

You can learn how to export the Gerber files and use the Gerber Viewer
(and online Gerber viewers) in dedicated chapters later in this book.

Image Converter

You can open the image converter app from the KiCad Project Manager.
With the Image converter, you can convert a bitmap image into a footprint.
Typical uses of the converter are to create a graphics footprint (such as a
company logo) or a footprint with an irregular shape that would be too
tedious to design in the footprint editor.

Bitmap to Component Converter

Bitmap Information
Original Picture ~ Greyscale Picture Black&White Picture

Bitmap size: 940 788 pixels
Bitmap PPI: 300 300 PPI
BPP: 32 bits

Output Parameters
Lock height/width ratio (e
Size: 10 8.4 mm)

Load Bitmap
Export to File
Export to Clipboard

Output Format

Symbol (.lb file)
O Footprint (.kicad_mod file)
Postscript (.ps file)
Drawing Sheet (.kicad_wks file)

Image Options

Black / White Threshold:

Explorations

www.techexplorations.com Negatie

0 56 100

d Like a Pro 3e Projects/MCU Datalogger/Graphics/techexplorations_logo.bmp

Figure 2.3.7: The Image Converter.

In the example above, I use the Image Converter to create a logo that I can
include in my PCBs. You can learn how to use the Image converter in a
dedicated chapter in Part 13 of this book.

Calculator tools

The calculator tool contains multiple calculators. Here is a list of tools:
1. Voltage regulators.
2. RF Attenuators.

69

E-Series.

Resistor color codes.
Transmission lines.
Via size.

Track Width.
Electrical spacing.

W NS W

Board classes.
In the example below, I am using the Track Width calculator to calculate the

correct width given a set of parameters.

&) PCB Calculator

Regulators RF Attenuators ~ E-Series Color Code ~ Transline ViaSize Track Width Elec*calspacing Board Classes

Parameters External Layer Traces
Current: 1.0 A Trace width: 0.300387 mm &
Temperature rise: 10.0 °C Trace thickness: 0,035 mm
: mm
Sonductoriongthil 20) Cross-section area: 0.0105135 mm?
Copper resistivity: 1.72e-08 Q:m Resistance: 00327197 Q
Voltage drop: 0.0327197 \'Z
If you specify the maximum current, then the trace widths will be calculated to suit. Bolwelioss=R0.0827197 W
If you specify one of the trace widths, the maximum current it can handle will be calculated. The width for the other trace to also handle this current will
then be calculated.
The controlling value is shown in bold.
The calculations are valid for currents up to 35 A (external) or 17.5 A (internal), temperature rises up to 100 °C, and widths of up to 400 mil (10 mm).
The formula, from IPC 2221, is
1=K * dTo* * (W*H)072
where: Internal Layer Traces
| = maximum current in A
dt = temperature rise above ambient in °C Trace width: 0.781437 mm @
W,H = width and thickness in mils
K =0.024 for internal traces or 0.048 for external traces Trace thickness: 0.035 mm @
Cross-section area: 0.0273503 mm?
Resistance: 0.0125776 Q
Voltage drop: 0.0125776 %
Power loss: 0.0125776 w

Reset to Defaults

Figure 2.3.8: The Calculator tool.

You can learn how to use the Track Width calculator by reading the
relevant chapter in the Recipes part of this book. The mode of operation for

the rest of the calculators is similar.

Drawing Sheet editor
The last main application in the KiCad suite is the Drawing Sheet editor.
You can use this editor to customize your schematic editor sheet. You can see

the editor in the example below.

70

[no drawing sheet loaded] — Drawing Sheet Editor

- 1s s CRAAQQIED M whioppercomer @ Pger @

g @O\ ~

Figure 2.3.9: The Drawing Sheet editor.

With the Drawing Sheet Editor, you can change the size of the schematic
sheet and everything within it. For example, you can remove or change the
size and location of the information container. You can also change the setup
of the text placeholders inside the information box.

To learn how to use the Drawing Sheet Editor, please read the relevant
chapter in the Recipes part of this book.

71

4. Paths and Libraries
In the KiCad project window, you will find the paths and libraries

configurations options under the preferences menu item.
File View Tools @ Preferefces Help Window

4-}’-’ Configure Paths...

e it | ii%. Manage Symbol Libraries...
ﬁ Project Files ;
=, Manage Footprint Libraries...
& vcupata i g P . Schemat
E Edit the pr:
i vcu pat -{A Set Language >
g . 2_layer_Muu_vataiogger_uververs 1 Symbol E
- 4_layer_MCU_Datalogger_Gerbers 1> Edit global
‘ | s nee —

Figure 2.4.1: The Preferences menu.

Let’s look at each one.

Configure Paths

Bring up the “Configure Paths” window from the Preferences menu.
This window contains a table to environment variables that contain paths
to important collections of files.

@ @ k Configure Paths
Environment Variables
Name Path
KICAD6_3DMODEL_DIR |/Vo|umes/RAID/Kicad Projects/Library/kicad/3dmodels/
KICAD6_FOOTPRINT_DIR /Volumes/RAID/Kicad Projects/Library/kicad/modules/
KICAD6_SYMBOL_DIR [Volumes/RAID/Kicad Projects/Library/kicad/library/
KICAD6_TEMPLATE_DIR /Volumes/RAID/Kicad Projects/Library/kicad/template/

KICAD_USER_TEMPLATE_DIR /Users/peter/Documents/Kicad/Course development documents/Templates

+ ®w
3D Search Paths

Alias Path Description

+ 1

? Cancel [ok]
Figure 2.4.2: The “Configure Paths” window.

72

As you can see in the figure above, there are five path environment

variables:

[e]

KICAD6_3DMODEL_DIR: points to a directory that contains 3D
models of components for use by the 3D viewer. Learn more about this
in a dedicated chapter.

KICAD6_3RD_PARTY: points to a directory that contains 3™ party
plugins, libraries, and other downloadable content.
KICAD6_FOOTPRINT_DIR: points to a directory that contains
footprint files for use by Pcbnew. Learn more about this in a dedicated
chapter.

KICAD6_SYMBOL_DIR: points to a directory that contains symbol files
for use by Eeschema. Learn more about this in a dedicated chapter.
KICAD6_TEMPLATE_DIR: points to a directory that contains sheet
template files for use by Eeschema. Learn more about this in a
dedicated chapter.

KICAD_USER_TEMPLATE_DIR: points to a directory that contains
project template files created by the user. You can use these template
files to start a new project quickly. Learn more about this in a dedicated

chapter.

When you install KiCad, these variables will inherit default values that

point to the KiCad application installation folder. You can use the Configure

Paths window to change these values.

For example, my computer has a solid-state drive with a limited amount of

available space on it. Because the libraries (especially the 3D models) take

several gigabytes of storage, I have opted to use my external RAID drive for

those resources. As you can see in Figure 2.4.2 above, the footprint, symbol,

and 3D model paths point to my external RAID drive, while the rest point to

locations on the internal SSD.

Manage Symbol Libraries

Use the symbol libraries manager to:

Add new symbol libraries.
Delete symbol libraries.

Activate or deactivate symbol libraries.

73

The Symbol Libraries window contains a list of active or inactive libraries
installed in your KiCad instance. Each library may contain one or more
schematic symbols. When a library is installed and activated, you can use its

symbols in your schematics in Eeschema.

Symbol Libraries

Libraries by Scope

Global Libraries = Project Specific Libraries

Active Nickname

Axxx ${KICAD6_SYMBOL_DIR}/4xxx.Kicad_sym

4xxx_IEEE ${KMD6_SYMBOL_DIR}/4xxx_IEEE.kicad_sym

(V] 74xGxx ${KICAD6_SYMBOL_DIR}/74xGxx.kicad_sym

74xx ${KICAD6_SYMBOL_DIR}/74xx.kicad_sym

74xx_IEEE ${KICAD6_SYMBOL_DIR}/74xx_IEEE.kicad_sym
Amplifier_Audio ${KICAD6_SYMBOL_DIR}/Amplifier_Audio.kicad_sym

® Amplifier_Buffer ${KICAD6_SYMBOL_DIR}/Amplifier_Buffer.kicad_sym
Amplifier_Current ${KICAD6_SYMBOL_DIR}/Amplifier_Current.kicad_sym

® Amplifier_Difference ${KICAD6_SYMBOL_DIR}/Amplifier_Difference.kicad_sym
Amplifier_Operational ${KICAD6_SYMBOL_DIR}/Amplifier_Operational.kicad_sym
Amplifier_Instrumentation ${KICAD6_SYMBOL_DIR}/Amplifier_Instrumentation.kicad_sym
Amplifier_Video ${KICAD6_SYMBOL_DIR}/Amplifier_Video.kicad_sym

Analog ${KICAD6_SYMBOL_DIR}/Analog.kicad_sym

Analog_ADC ${KICAD6_SYMBOL_DIR}/Analog_ADC.kicad_sym

m Analna DAC KKICADA SYMROI NIRYVAnalna DAC kicad evm

+ ®m T J [] Migrate Libraries

Path Substitutions:

${KICAD6_SYMBOL_DIR} /Volumes/RAID/Kicad Projects/Library/kicad/library/
${KIPRIMOD} /Users/peter/Documents/Kicad/Course development documents/KiCad Like a Pro 3e Projects/MCU Datalogger

Cancel “
Figure 2.4.3: The “Symbol Libraries” window.

In the figure above, you can see the Symbol Libraries window with
several of the libraries installed in my instance of KiCad.
Notice that:

o The table contains two tabs: “Global Libraries” and “Project Specific
Libraries.” You can manage libraries under each tab to control the
library visibility (global or project-specific).

o Each library has a name and a path. The path can use an environment
variable, as in the example above. Alternatively, you can set an absolute
path to a library; this is often a good option when you want to install a
library stored outside the standard environment paths.

o If you forget the environment variable paths, look at the bottom of the
window. In the table “Path Substitutions,” you can see the actual path
stored in the environment variables.

Learn how to use the symbol libraries manager in a dedicated chapter later in
this book.

74

Manage Footprint libraries
Use the footprint libraries manager to:
* Add new footprint libraries.
¢ Delete footprint libraries.

* Activate or deactivate footprint libraries.

The footprint libraries manager window works similarly to the symbol

libraries manager.

o

Libraries by Scope

Active

@

Nickname
Audio_Module
Battery
Button_Switch_Keyboard
Button_Switch_SMD
Button_Switch_THT
Buzzer_Beeper
Calibration_Scale
Capacitor_SMD
Capacitor_THT
Capacitor_Tantalum_SMD
Connector
Connector_AMASS

Footprint Libraries

Global Libraries ~ Project Specific Libraries

Library Path
${KICAD6_FOOTPRINT_QIR}/Audio_Module.pretty
$(K|CADG_FOOTPRINT_&R}/Baﬂery.preuy
${KICAD6_FOOTPRINT_DIR}/Button_Switch_Keyboard.pretty
${KICAD6_FOOTPRINT_DIR}/Button_Switch_SMD.pretty
${KICAD6_FOOTPRINT_DIR}/Button_Switch_THT.pretty
${KICAD6_FOOTPRINT_DIR}/Buzzer_Beeper.pretty
${KICAD6_FOOTPRINT_DIR}/Calibration_Scale.pretty
${KICAD6_FOOTPRINT_DIR}/Capacitor_SMD.pretty
${KICAD6_FOOTPRINT_DIR}/Capacitor_THT.pretty
${KICAD6_FOOTPRINT_DIR}/Capacitor_Tantalum_SMD.pretty
${KICAD6_FOOTPRINT_DIR}/Connector.pretty
${KICAD6_FOOTPRINT_DIR}/Connector_AMASS.pretty

Connector_Amphenol ${KICAD6_FOOTPRINT_DIR}/Connector_Amphenol.pretty

${KICAD6_FOOTPRINT_DIR}/Connector_Audio.pretty

CH<H<N<H<H<N<N<N<N<N<N<N<]

Connector_Audio

+ (W T]
Path Substitutions

${KICAD6_3DMODEL_DIR} /Volumes/RAID/Kicad Projects/Library/kicad/3dmodels/
${KICAD6_FOOTPRINT_DIR} /Volumes/RAID/Kicad Projects/Library/kicad/modules/
${KIPRJMOD} /Users/peter/Documents/Kicad/Course development documents/KiCad Like a Pro 3e Projects/MCU Datalogger

cancel | (LD
Figure 2.4.4: The “Footprint Libraries” window.

You can control the context of a library by listing them under the “Global

Libraries” or “Project Specific Libraries” tab. Each library has a name and a

path, and the path may contain an environment variable or an absolute path.

Learn how to use the footprint libraries manager in a dedicated chapter later

in this book.

75

5. Create a new project from scratch
In this chapter, you will learn how to create a new KiCad project.
Kicad offers you two ways to start a new project:
1. Anew blank project.

2. A new project from a template.
W File View Tools Preferences Help Window
) | E New Project... h
E Open Project... N

[no project loaded]

Schematic Editor
Edit the project schematic

@ Open Recent >
Symbol Editor
Edit global and/or project schematic symbol }

PCB Editor
Edit the project PCB design

\¢ | =r

5 Import Non-KiCad Project... >

Footprint Editor
Edit global and/or project PCB footprint librar

% Unarchive Project...
Gerber Viewer
Preview Gerber files

w3 8 Y

Figure 2.5.1: KiCad offers two ways to start a new project.

When you start a new project from a template, you can take advantage of
work that you (or the original author of the template) have done in the past.
Project templates offer an excellent way to speed up the initial time-
consuming steps for projects that share a common base. For example, if you
create Arduino shields, you can set up an Arduino shield base template and
use it to create new Arduino shield projects. You can learn more about project
templates in a dedicated chapter in the Recipes part.

In this chapter, you will create a new blank project. In the File menu, click on
“New Project...”. In the window that appears, set a name (“1”, below), check
the new folder box to have KiCad automatically create a new folder for your
project (“2”), and click Save (“3”).

76

Save
Create New Project
Save As:

Example new project

Tags:

|

< =v =Ty 7 KiCad Like a Pro 3e Proj... @ ~ Q
Name Date Modified v Size K
> £ MCU Datalogger Today at 9:24 am 4.2MB Fc
> 53 Prj1- LED torch Today at 7:42 am 1.1MB Fc
> T CircuitSimulationExample 29 Jul 2021 at 11:54 am Fc
> T ESP32 Clone devkit 22 Jul 2021 at 11:07 am Fc
> T 4x8x8 LED Matrix Clock 16 Jul 2021 at 3:20 pm Fc
> 7 Breadboard Power Supply project files 13 Jul 2021 at 12:21 pm Fc

Create a new folder for the project

Cancel E?

Figure 2.5.2: Set a name and directory for the new project.

New Folder

KiCad will set up your new project. In the project folder, you will see
three new files:

1. The main project file with extension “.kicad_pro.”
2.

3.
The KiCad project window will show the project as a hierarchy tree. At the top

The schematic design file with extension “ kicad_sch.”

The layout design file with extension “.kicad_pcb.”

of the hierarchy is the project file (“.kicad_pro”), and inside of that are the

schematic and layout files.

a TR (] < KiCad Like a Pro 3e...
Example new project.kicad_pro J- SchematiclEditor
= H P RIS = " P Edit the project schematic Name
- . Example new project.kicad_pch —— B .
- > 4x8x8 LED Matrix Clock
M .é‘ Example new project kicad_sch -{_ Symbol Editor > 77 Breadboard Power Supply project files
> Edit global and/or project Sew._ atic symbol libraries > B3 GircuitSimulationExample
-
» > 7] ESP32 Clone devkit
e \ PCB Edite. v [Example new project
A tJihe project PCEueey 1. BB Example new project.kicad_pcb
.{ = m Example new proiect.kicad_pro
n Footprint Editor — S X 3= Example new prukct,kicad_sch
Edit global and/or project PCB footprint libraries T > 5 MCU Datalogger
> [Prj 1 - LED torch
E Gerber Viewer
Preview Gerber files
5 4 Image Converter 1 of 10 selected, 2.02 TB avail
s Convert bitmap images to schematic symbols or PCE A e s

Figure 2.5.3: The new project is ready.

At this point, your new project is ready. You can open the schematic
editor and begin work on the schematic. This is where you will begin work in
the next part of this book, in which you will work on your first KiCad project.
In the next chapter, you will learn how to create a new KiCad project from a
template.

77

6. Create a new project from a template

In this chapter, you will learn how to create a new project from a template.
KiCad comes with several project templates ready to use, but you can also
create yours. You can read a dedicated chapter in the Recipes part if you are
interested in creating custom project templates.

Click on “New Project from Template” in the File menu to create a new
project from a template. The project templates window will appear (see

below).

Project Template Selector

System Templates User Templates

- vi‘-->

; ‘E.,\‘."’cf.’"f‘,v b ‘?,“’OCG'_S’,,
o omm % 106mm - B6m AT 1593K Enc
o0 as BeagleBon EuroCard 1 EuroCard 1 Minnowl o Raspberry Raspberry Raspberry STM32 Dis T

Raspberry Pi

Expansion Board

This project template is the basis of an expansion board for the Raspberry Pi $25 ARM board.

This base project includes a PCB edge defined as the same size 5 the Raspberry-Pi PCB with the connectors placed
correctly to align the two boards. All IO present on the Raspberry-'ti board is connected to the project through the 0.1"
expansion headers.

The board outline looks like the following:

Folder: /Volumes/RAID/Kicad Projects/Library/kicad/template/ Browse Validate

Cancel OK

Figure 2.6.1: The project templates selector.

The selector window contains two tabs: System Templates and User
Templates.

78

In a new KiCad installation, the User Templates tab will be empty until
you create a new template and store it in the appropriate template directory
(learn how to do this in the relevant chapter in the Recipes part).

The System Templates tab shows a collection of built-in templates. Click
on a template icon to see information about it. For this example, I have
selected one of the Raspberry Pi templates. The information box shows a
description of the template. The description is composed of regular HTML so
that you can include text, links, and images.

After selecting the template, you want to use, click OK. This will bring
up the Save dialog box. This is identical to the dialog box that appears when
you create a new blank project. Give the new project a name and location, and
click Save.

Save
New Project Folder

Save As: | ample_new_project_from_template

=v = 77 KiCad Like a Pro 3e Proj... B ~ Q

Name Date Modified S Ki
> [Example new project Today at 9:30 am -- Fc
> T MCU Datalogger Today at 9:24 am 4.2MB Fc
> 77 Prj1- LED torch Today at 7:42 am *1.1MB Fc
> T CircuitSimulationExample 29 Jul 2021 at 11:54 am -- Fc
> 777 ESP32 Clone devkit 22 Jul 2021 at 11:07 am -- Fc
> 77 4x8x8 LED Matrix Clock 16 Jul 2021 at 3:20 pm -- Fc
> 77 Breadboard Power Supply project files 13 Jul 2021 at 12:21 pm -- Fc

Create a new folder for the project

New Folder cancel (D

Figure 2.6.2: The name and location of the new project.
When KiCad finished creating the new project from the Raspberry Pi

template, you will see several new files in the project folder (right, below) and
the project hierarchy in the KiCad project window (left, below).

E Project Files (] < KiCad Like a Pro 3e...
E example_new_project_from_| kica !-—. ¢ Editor 1 N
= - it the project schematic ama
- . example_new_project_from_template.kicad T -
> 4x8x8 LED Matrix Clock
P -é‘ example_new_project_from_template kicac' Symbol Editor > [Breadboard Power Supply project files
Edit global and/or project sch, matic symbol libraries > B CircuitSimulationExample

-

» > [} ESP32 Clone devkit
=~ PCB Edie. > [Example new project
2, . * the project s« asign v 01 example_new_project_from_template

Y BB example_new_projec..._template.kicad_pch

n Footprint Edne. example_new_projec..._template.kicad_prl

Edit global and/or projectw.__ *~rint [ibraries L example_new_projec..._template kicad_pro

3= example_new_projec..._template.kicad_sch
Gerber Viewer example_new_project_from_template.stf

Preview Gerber files fp-info-cache

KGEHY

] sym-lib-table
Image Converter { & 7 MCU Datalogger
Convert bitmap images to schematic symbols or PCB footp 1 > B9 Prj 1- LED torch

Figure 2.6.3: The new project created from a project template.

79

In the project folder (above, right), notice that several additional files also
appear in addition to the project, schematic, and layout files. These additional
files have been copied from the Raspberry Pi project template.

In the KiCad project window, click on the Schematic Editor button to open
Eeschema. In a new blank project, the schematic editor is empty. But this is a
new project from a template; the schematic and layout editors are already
populated with seeding content.

Below is the schematic editor showing a header and mounting holes for a
Raspberry Pi project:

example_new_project_from_template [example_new_project_from_template/] — Schematic Editor

A% Dem b Pl CAaQ@AQAET 2 2> AlRRE EodED
122 A\ This file was created by an older version of KiCad. It will be converted to the new format when saved. [N
. 1
mil
o / 1L
¥ 7
B /
= N
X
_+
H H A
B
AS
7]
)

g@B-i

091
00:

Z090 X 29.84 Y -8.89 dx 29.84 dy -8.89 dist 31.14 grid 0.64 mm

Figure 2.6.4: The new project schematic is already populated with content from the template.

Similarly, the layout editor is already populated with content from the
template:

80

example_new_project_from_template — PCB Editor

O IR " ~ A sy me | 34 - . w == | GF
A®DB6 JOMSACHCROYCYON T ad ldB o Breueoun /Il e

Track: use netclass width e U Via: use netclass sizes @ Grid: 2.5400 mm (0.1000 in) B zoomauo B

iii1 /A This file was created by an older version of KiCad. It will be converted to the new format when saved.) | CRESSSS

5

N

7

(«

00000000000000000000 []
Olo009000000000000000

W £ e o

b |

T

< 4

[+

4

»Layer Display Options
PIN ADDON BOARD Presets: (i Tab)

BE FITTED ON THE REVERSE OF THE BOARD

ADD EDGE OM CAMERA AND DISPLAY PORT REQUIRED

Pads Vias TrackSegments Nodes Nets Unrouted
aa [0 40 31 9

2184 X 248.2600 Y122.0600 dx 248.2600 dy 1220600 dist 276.6436 grid X 25400 mm Y 2.5400 mm mm

Figure 2.6.5: The new project layout is already populated with content from the template.

As you can see, much of the work has already been done. In the layout
editor, the design of the board outline requires exact measurements, which are
time-consuming. The placement of the mounting holes and connectors,
likewise, must be exact and, as a result, very time-consuming. All this is work
that you can avoid when you create a new project from a template.

Creating a new project from a template is an example of a productivity-

boosting tool that KiCad provides. You will learn about many more in this
book.

81

7. KiCad 6 on Mac OS, Linux, Windows

KiCad has supported multiple operating systems from its early days.
When I started using KiCad in version four, I used it on Windows, Mac OS,
and Linux (Ubuntu). However, there were differences between those
platforms, both in terms of reliability (I found Windows, generally, worked
better) and how the user interface looked and behaved.

I have been using KiCad 6 almost daily for almost nine months now, and I
feel that KiCad works seamlessly on the three operating systems I have used
(Mac OS, Windows 10, and Linux).

I spent a lot of time comparing the two. My testing consisted of a single
project that I opened and edited across the three operating systems. I used
KiCad's "archive project” function, which you can find under "File" in the
KiCad project window. Opening and working on a project that I previously
edited on a different operating system were trouble-free.

Below, you can see the same project's main KiCad project window in Mac
OS, Windows, and Kubuntu. They look identical while following the Ul

conventions of their host operating system.

82

oo e * Ax8x8 LED Matrix Clock — KiCad
Project Files S

8 2x8x8 LED Matrix Clock kicad_pro Schematic Editor

[Edit the project schematic

B 4x8x8 LED Matrix Clock-backups

B 4x8x8 LED Matrix Clock Gerbers

,.é- 4x8x8 LED Matrix Clock.kicad_sch

Symbol Editor
Edit global and/or project schematic symbol libraries

PCB Editor
Edit the project PCB design

20 ea

Footprint Editor
Edit global and/or project PCB footprint libraries

Gerber Viewer
Preview Gerber files

Image Converter
Convert bitmap images to schematic symbols or PCB footprints

Calculator Tools
Show tools for calculating resistance, current capacity, etc.

o Mac OS

m 4x8x8 LED Matrix Clock — KiCad - o X

File View Tools Preferences Help
E Project Files

4x8x8 LED Matrix Clock.kicad_pro Schematic Editor

= [458 LED Miatrix Clock-backups B prot chorrie
o[l 4x8x8 LED Matrix Clock Gerbers Symbol Editor

’ i \ Edit global and/or project schematic symbol libraries
s 4x8xB LED Matrix Clock kicad_sch
— PCB Editor
~ Edit the project PCB design
L
]

Gerber Viewer
Preview Gerber files

m Footprint Editor
Edit global and/or project PCB footprint libraries
i Image Converter

Convert bitmap images to schematic symbels or PCB footprints
Calculator Tools
Show tools for calculating resistance, current capacity, etc.

-~ Drawina Sheet Editar

e Windows

Ki 4x8x8 LED Matrix Clock

KiCad

File View Tools Preferences Help
Project Files

E - E 4x8x8 LED Matrix Clock.kicad pro Schematic Editor

= - 4x8x8 LED Matrix Clock-backups AL P
o| * B 4x8x8 LED Matrix Clock Gerbers Symbol Editor

= BB 4x8x8 LED Matrix Clock kicad_pcb Edit global and/or project schematic symbol libraries
A .é- 4x8x8 LED Matrix Clock.kicad_sch s

IS PCB Editor

(9 Edit the project PCB design

n Footprint Editor

B
5
bad
e
A

Edit global and/or project PCB footprint libraries

Gerber Viewer
Preview Gerber files

Image Converter
Convert bitmap images to schematic symbols or PCB footprints

Calculator Tools
Show tools for calculating resistance, current capacity, etc.

e Linux Kubuntu

Figure 2.7.1: KiCad project window on three OSs.

There were no surprises in terms of KiCad's main applications,
Eeschema and Pcbnew, and how those work. Shortcuts, mouse conventions,
menus, buttons, colors; all work as expected in a truly cross-platform
compatible application suite.

Below is an example of Eeschema in the three operating systems:

83

PWR_FLAG

4x8x8 LED Matrix Clock [4x8x8 LED Matrix Clock/] — Schematic Editor

PR A B &2k ARRREZ ELIED

$35512D07V64

12
Barrel_Jack

Uk

B4k NN

<

AR

G5 4x8x8 LED Matrix Clock [4x848 LED Matrix Clack/] — Schematic Editor

File Edit View Place inxgect Tools

B | & |[Q 5 58 tectica Rules checker

Previous Marker
Next Marker

Exclude Marker

1

3

@ simuiator.

Preferences Help

*CQQ@@Q Bz Al bREHESEDS EBE

% 4+ 18]

- o

File Edit View Place Inspect Tools

A& DB/ 0D

3

-+ B 1

And here is Pcbnew:

Preferences Help

LPH|CRARARIET S &

Figure 2.7.2: Eeschema in the three OSs.

84

AEDAR HLCRAAAR & 2 Had BB Hie Moes |- & & §

Track: use netclass width ¢ | =] | Via: use netclass sizes = | Grid: 2.5400 mm (01000 in) < | Zoom Auto

7 h

WO E"N

T

2 mad BB 8 e (W | & | |5

Sppearance
Layers Obrects Nets
@ Tracks %
© vas
© Pads
© Zones]
© Footprints Front

© Foatprits Back
© Through-hole Pads

[

8

O i
o)
io 0
1o 0
o © £ Ovauws
o 0 & References
3 O [¥ g0 & S Footprint Text
3 5o ™ 2 Hdden Ten
o o /O FRaisnest
o 0 WO No-Connests
o 30 ings
O = T s i 5"9
200600007 =} Exclusions
ue
@ méo heet
b] WO Gnd
T
<L
-+ BOARD CHARACTERISTICS .
Y Copper Laye bod ©r
+
o Window
5 4xBx8 LED Matrix Clock — PCB Editor v

| File Edit View Place Route Inspect Tools Preferences Help
e 0Den Ao’ ailifgd EB o Narw -l &S
Track: use netclasswidth v (=] | Via: use netclasssizes v || Grid: 127000 mm (0.5000i) ¥ | ZeomAuto ¥
Appearance
Layers | Objects | Nets

*EOFw

114,9350 mm mCec

sse M O Fadhesve
B D B Adhesive

4 © Fpaste
LA @ B.Paste
O Fsilkscreen
© B.siksereen
£ WOFrMask
¢ MO BMask
} N O userdravings

© userComments
© Userkcol

» Layer Display Options

Presets: (CurboTab)

Selection Firter

5006060660
SOl

Figure 2.7.3: Pcbnew in the three OSs.

The same uniformity appears when testing other KiCad applications, such
as the 3D viewer, the various preferences windows, and the interactive router.
Even secondary widgets and features work well across the supported

platforms.

85

[BN) Schematic Setup
General Pin to Pin Connections

Formatting

Z Input Pin
Field Name Templates

|
Electrical Rules
. Output Pin
Violation Severity Input Pin . | *

Bidirectional Pin
e outputein [@

i siairectional pin [l i T[']'S‘“E Pin
mi-saerin [A DB "lass“e”i"
eassive pin [} [0D D D Fl"“ o
Free Pin Lllnsnecilied Pin
unspecificapin 4 1) A A A A Plower Input Pin
rawerinputei D A BB A B Pleweroutnu: Pin
rovercuputen QO A OBE A B O ?b!n Collector

oo OMA BB ABOB P

v (0 4 A BB A BOBE
Nncnnnecticnooooaooooooo

o Mac OS

Schematic Setup x
= General Pin to Pin Connections
Formatting input Pin
Field Name Templates |
- Electrical Rul . Output Pin
s rlza ules Input Pin . X p
IRiior sy sidirectional Pin
Pin Conflicts Map Qutput Pin . 0 |

) P’“J::: Classes Bidirectional Pin . . . Tlri’sma p'-" .
Text Variables TrisState Pin . A . . Plasslve pin
passive Pin F‘ree Pin
rree vin | [} D) LIInSpeciﬁed Pin
Unspecified Pin | £ A P|“WE”"P“‘P"I
Power Input Pin . Power Output Pin
power output pin | [
Open Collector .

|
Open Emitter .

Open Collector

DO
Open Emitts

208 e

o Connection
20BN’

PE>E>E
el

@

AR
an
as
ae
an

eeemr

a
a
a
a

e Windows

Figure 2.7.4: Schematic Setup in Mac OS and Windows.

The quality of the implementation of Kicad in the three operating systems I
have tested is excellent. The implication for solo users and teams is that you
can use KiCad 6 with high confidence that you can edit the same projects

across platforms. If you are in a team, your team members will work using

their preferred operating system.

86

8. Differences between KiCad 6 and 5

KiCad 6 is a significant upgrade over KiCad 5. If you are new to KiCad,
and KiCad 6 is the first KiCad you have ever used, you can safely ignore this
chapter. Go ahead to Part 3, and begin work on your first KiCad project.

However, if you have used a previous version of KiCad and created one or
more projects, you take some time to read a blog post that I wrote in early
2021. In that blog post, I go into detail to highlight and explain the differences
between KiCad 6 and KiCad 5.

KiCad 6 is coming!
Peter’s BIG review

January 20, 2021

By Peter
TABLE OF CONTENTS (CLICK TO OPEN/CLOSE) X
1 KiCad 6 Vertical Top toolbar: Symbol
impressions in a toolbar: Properties &
nutshell multitools derivatives
New file format Vertical Top toolbar: Add to
Tools and toolbar: Rule schematic button
Workflow areas Left toolbar
User interface Board setup Right toolbar
2 Eeschemain Board Stackup 6 Footprint Editor in
KiCad 6 Text & KiCad 6
Schematic Graphics Right toolset

Figure 2.8.1: Peter’s Big KiCad 6 review.

Here, I will list my top-three most significant changes in KiCad 6:

1. KiCad 6 has a new file format. The transition into this format, based on
the S-Expressions standard, started in KiCad 5. With KiCad 6, the
transition is complete.

2. The user interface is refreshed and modernized. While in KiCad 6, the

user interface is still recognizable from the earlier versions, it follows

87

modern conventions on how the mouse and keyboard work. If you are
coming from an earlier version of KiCad, you will use your existing
KiCad knowledge. Icons have been redesigned. The menus and toolbars
are better placed and organized. There is a single Preferences window.
3. The schematic editing paradigm is updated. Now, when you click on an
element in the schematic editor, the element is selected. This was not the

case in KiCad 5 and prior, causing much confusion and frustration.

Get the full details of what’s new in KiCad 6 in my comprehensive blog

post.

88

Part 3: Project - A hands-on tour of
KiCad - Schematic Design

89

1. Introduction to schematic design and objective of
this section

In Part 3 of the book (which you are reading now), you will learn about the
basics of KiCad by working and completing a simple PCB project. In Part 3,
the focus is on the schematic design, while in Part 4, the focus shifts to the
layout design and the manufacturing. By the end of this project, you will have
experienced the PCB design process using KiCad from start to finish.

While this first project is relatively simple, it will teach you the most
important KiCad features and tools. You will develop skills that you will use
in every future project regardless of its complexity.

As you work your way through this project, remember that you may need
to reference the chapters in Part 13, Recipes, if you want to learn more details
about specific features. To keep the size of the project concise, I have moved
detailed descriptions of various features and tools to the end of the book.

The practical objective of this project is to design and manufacture a simple
LED torch, like the one you see in 3.1.1 (below):

Battery_Cell

Final PCB, back Final PCB, front

Figure 3.1.1: The manufactured project deliverable.

Most of the work will be in Eeschema (the schematic design editor) and
Pcbnew (the layout design editor). At the end of this Part 3 of the book, the
schematic design will look like this (Figure 3.1.2):

90

B& DO NDOOC A% CRAARAAIET & 25 AlRRE RicdHED B E

[y
- I
= >
I; LED torch A
4

= ° 2
LED_THT:LED_D5.0mm R!sQurJNV-R_MhLDINDZO“,L}.EMLDi.émm_P7.mem,Nm\zunlal Button_Switch_THT:SW_TH_Tactile_Omron_B3F—10xx =~

=
D1 © R1 SW1A +4
B2 R SW_DPST_x2 =
| P2 N e B o B
N T 1 2 A
N =
7]
B
Battery:BatteryHolder_Keystone_1058_1x2032 :|'
BT1 E
Battery
LED_cathode I bat_pos
+
Using coin cell
battery holder.

2472 X176 Y5461 dx 11176 dy 5461 dist 124.39 grid 127 mm Select tem(s)

Figure 3.1.2: The final project schematic design.

The final layout will look like this (Figure 3.1.3):

@ KiCod File Edt View Place Route Inspect Tools Preferences Help Window

ABDOMOC A CRARAAA L 2! Bigd PR Hio Marn | -llIE S
Track: use netclass width @) =) | Via: use netclass sizes)| Grid:02540mm (00100in) @) | ZoomAwo @

EEEEER

3L
00000005 500000000000000000000 ° i

HTIW da3aunoi23q,

VTS -HYOoD NN\ zh

Figure 3.1.3: The final project layout design.

To guide the design of the PCB, I will be using the PCB design workflow
that I outlined earlier in this book. I am also providing a summary in the next
chapter.

The schematic (see Figure 3.1.2) contains only a few standard component
symbols: an LED, a resistor, a button switch, and a battery holder. All these

symbols are available in the KiCad libraries, so you will not need to get them

91

from external sources. Electrically, the circuit contains a single loop. When you
press the button, the circuit closes, and the LED turns on.

Despite this being a simple project, you will learn how to find and add
symbols to the editor, associate them with layout footprints, annotate them,
wire them, create named nets, run the Electrical Rules Checker, and decorate
the schematic with text and graphics.

In Part 4, you will learn how to import the schematic in Pcbnew and design
the physical layout, complete with beautifully rounded corners, mounting
holes, silkscreen graphics, and, of course, pass the design rules check before

sending it to manufacturing.

92

Part 4: Project- A hands-on tour of
KiCad - Layout

93

1. Introduction to layout design and objective of this

section

In the chapters of this part of the book, I will continue developing the LED
torch project that I started in Part 3. At the end of the previous chapter, I
completed the schematic design of the project PCB. I will now continue with
the layout design.

To guide me with this work, I will follow the steps outlined in the layout
design workflow that I outlined in Part 3.

To design the layout of the PCB, I'll be using Pcbnew. At the end of this
part of the book, the PCB will look like this (Figure 4.1.1):

AR Do BACRAAAR & 2 B (2K o Wrcuewn M ES

ack: use netclass width @ U Via: use netclass sizes @ = Grid: 0.1270 mm (0.0050 in) B Zoom Auto (2]

(|

Use line graphics to mark the center of the battery holder.
This will make it easier to draw the arcs for the outline.

gl 1312 15 IS
B L

Grid for edge cu
Grid for placing:
Grid for routing:

=

E
o
N
0
<%
0
N

e gsH—AvoD NN\ zh

66.0400 mm

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

Figure 4.1.1: The final LED torch PCB layout.

Here is a 3D rendering, also made in KiCad (Figure 4.1.2):

94

Battery_cell

J?Tech-
Exploration

Cad

D
ESienep wiT
~

Figure 4.1.2: The final LED torch PCB layout in 3D.

The final PCB layout of this simple project contains several interesting

elements:
o Both surface-mounted and through-hole components.
o Rounded edges moulded around the footprints of the PCB components.

o Silkscreen graphics (logos) and text.

Even though this is a simple project, it allows us to practice the essential skills
for PCB design using KiCad.

Let’s begin the layout design workflow with Pcbnew in the next chapter.

95

Part 9: Project - Design a simple
breadboard power supply PCB

96

1. Introduction

Welcome to Part 9 of this book! In the following chapters, you will learn
how to design a simple yet practical PCB. This PCB is a component of a
breadboard power supply. You can use this power supply to provide power to
circuits implemented on a mini breadboard, which is a core part of electronics
prototyping.

This project is an opportunity to use the knowledge you acquired in the
last part of this book to create a non-trivial PCB. To design this PCB, you will
be using the majority of the capabilities of KiCad’s schematic and layout
editors. You will also practice the PCB development workflow that you
learned in Part 6 of the book.

The inspiration for the design of this PCB came from my work at
creating small electronics circuits for my Arduino and ESP32 courses. When
the circuit I was building on the breadboard needed more power than the
MCU could provide, I would search through a range of possible options that
usually included one of my bench-top power supplies and wires. The problem
is that the bench-top power supplies are noisy (they have a large cooling fan),
need some setup (select voltage, current), and their wires get in the way. In
addition, I have drawers full of wall power supplies that I could be using.
They are plug-and-play and silent.

For my breadboard power supply, I needed something that:

1. Plugs directly on the breadboard; therefore, there are no wires.

2. Have an on/ off switch.

3. Can provide 5V and 3.3V power.

4. Can draw power from a range of wall power supplies, from 6V to
12V.

After some deliberation, I settled for a design like the one in the image
below:

97

Figure 9.1.1: A 3D view of the breadboard power supply PCB.

The PCB’s dimensions and shape are constrained by the dimensions of
power row locations of the mini breadboard on which the PCB will connect.
The connection between the breadboard and the PCB is made via two sets of
pin headers. I have added two double screw terminals to provide an
additional way to output power via jumper wires instead of the pins.

Below you can see a photo that shows the PCB against a mini
breadboard:

Figure 9.1.2: The power supply PCB over a mini breadboard.

98

When the PCB is attached to the left side of the breadboard, almost the
entire right side is available for the prototyping circuit. The indentation
between the pin headers also allows access to the first couple of columns in
the breadboard that otherwise would have been covered.

To keep the power supply cable away from the prototyping area, I have
placed the barrel connector on the left side of the PCB. The voltage selector
switches are on the top and bottom of the board to make it easy to access.

Below you can see the final schematic design:

Output voltage selector 2

12v vl V3 Conn_01x03_Male
* I 2 e
i V1

e | |

C1

.
st
—r 10u
}

Output to breadboard
2

i H 1 %
it I Conn_01x02_Male
& PWR_FLAG P 2 S ninal_01x02

i :.@
GND
(| . g
i PWR_FLAG

- Output to jumper wires
| fliped the screw terminal veytically so ti

3.3V circuit ; <

12v 3[;

Qutput to breadboard
2

—£—— Cann_01x02_Male

LED P 2 Screw_Terminal_01x02
n i 7

Output to jumper wire:

Power input indicator o oo "
| fliped the screw terminal vejtically so tI

GND

Figure 9.1.3: The project schematic design (final).

In the schematic above, you can see the power supply components
arranged in three functional groups. You can see the two major components,
the voltage regulators, inputs, outputs, and switches. You will work on the
schematic design in the next chapter.

We'll do the schematic design in a single sheet. Most of the symbols
needed come with KiCad’s libraries, but one is available in the Digikey library.

Below, you can see the final layout design:

99

40.6400 mm

(=
£
o
B
[0 0]
I
(e)]
<t

10u €1 1u C3

3.3V

33.7822 mm

Figure 9.1.4: The project layout design (final).

The layout has several interesting features, including a composite shape
with rounded corners, copper fills, all THT components to make it easy to
assemble, a complete set of top and bottom silkscreen text and graphics, and is
manually routed.

Perhaps the most challenging aspect of the layout design is its
dimensions. The PCB’s pin headers have to match precisely with the mini
breadboard’s power row pins. To achieve a good match, you will need to
make accurate measurements on the breadboard and then use those
measurements to precisely position the two double pin headers. Then you will
design the board around those fixed footprints.

Below you can see the Bill of Materials for this project, as I have
extracted it from the KiCad project (learn how later in this book):

Referenc | Value Footprint

e

C1 10u Capacitor_THT:C_Disc_D3.0mm_W1.6m
m_P2.50mm

100

C2

C3

D1

il

J2, 15

J4,]6

13,7

R1, R2

R3

S1

Ul

U2

Tu

0.1u
LED

Barrel_Jack_Switch

Screw_Terminal_01x
02

Conn_01x02_Male

Conn_01x03_Male

330

560

EG1218

LM317_TO-220

LM7805_TO220

Capacitor_THT:C_Disc_D3.0mm_W1.6m
m_P2.50mm
Capacitor_THT:C_Disc_D3.0mm_W1.6m
m_P2.50mm

LED_THT:LED_D5.0mm
Connector_BarrelJack:BarrelJack_Horizo
ntal
TerminalBlock:TerminalBlock_bornier-2_
P5.08mm
Connector_PinHeader_2.54mm:PinHead
er_1x02_P2.54mm_Vertical
Connector_PinHeader_2.54mm:PinHead
er_1x02_P2.54mm_Vertical

Resistor THT:R_Axial DIN0204_L3.6m
m_D1.6mm_P7.62mm_Horizontal
Resistor THT:R_Axial DIN0204_L3.6m
m_D1.6mm_P7.62mm_Horizontal
digikey-
footprints:Switch_Slide_11.6x4mm_EG12
18
Package_TO_SOT_THT:TO-220-3_Vertica
1
Package_TO_SOT_THT:TO-220-3_Vertica
1

Table 9.1.1: The Bill of Materials for this project.

Let’s begin with the schematic design in the next chapter.

101

Part 10: Project - A4 x 8 x 8 LED matrix
array

102

1. Introduction

Welcome to Part Ten! In the chapters that follow, you will design a PCB
that can hold four 8x8 LED matrix displays controlled by an Arduino Pro
mini. The board also includes two push buttons to which you can assign
arbitrary functions. I plan to use mine as a Pomodoro timer. I will use one
button to select the lap duration (say, 15, 20, or 25 minutes) and the other
button to reset the timer. When the duration I have set expires, the display
will blink to let me know.

You can see the two sides of the populated PCB in the photograph
below:

Figure 10.1.1: The PCB in this project, populated.

The inspiration for this project is that I forget to get up from my desk at
regular intervals. I could use a desktop or phone Pomodoro app or even a
classic mechanical Pomodoro timer, but why buy one when I can make one?

I decided to use an Arduino Pro Mini because:

o I'have alot of them.
o They are easy to find in the market

103

o They are very cheap.

o They are small.

o They have an onboard regulator.

o They are accurate enough to count short periods.

o I don’t need a clock function, so the absence of a real-time clock is not
an issue.

This board does not contain a UART to USB interface, so you must
provide an external bridging device. This device is required for programming
the microcontroller. I use a USD to serial adaptor from Freetronics, but there
are many other options in the market.

I decided to use the 8x8 LED matrix display module because I like its
versatility. An 8x8 LED matrix display can show numbers, text, and simple
graphics compared. I also like the way it looks from a distance and the ability
to create simple animation. All this gives me scope to add features to my
Pomodoro project in the future.

Below you can see the schematic for this PCB. This is the schematic you
will create by the end of Chapter 10.2.

s3
$512D07VGH

L sHiELD
X521 sHieLp

PWR_FLAG i
GND T 2

52
Vee 1| ey | BoreJack
f l PWR_FLAG

Z
S

a
<

5SS NNE S S5

LEDL_IN LED1_OUT LEDZ_IN LEDZ_OUT LED3_IN LED3 OUT LEDA4_IN LED4_OUT

i 5

EERMTTE

Vee 5] 5 Vee s 5 Vee 5
4 GND GND

305 DNt 3
2 Cs1
ClKO ClK 1 1 ClKL 1

el

=

5 5

5 4 4 GND 4 X

3 DIN2__ 3 | J6 J7[3 DIN3 3 189 F 3
—x

2 Cs2 2 2 Cs3 2 2

1 ClK2 1 1 CLK3 1 I

4 s

o
%]
8
I
a
N

H

o
\\D—‘H
=
=
3
Zo
z
S
ujk

; 1

MODE_SELECT|

TIMER_RESET

s flipped vertically

RL st . sothat pin numvers corres pond correc tly
sssssss

10K 18259671

2 4 "
| 3 o MountingHole

52 Vee H2
R2
10K 1825967-1 ° MountingHole

—F 2 L4 H3
T 1 3 ° MountingHole

H
MountingHole

Figure 10.1.2: The project schematic.

To draw this schematic, I have opted to use line wires for all pins that
are nearby. I have added net labels to all power, data, clock nets, and button
signal nets. I was unable to find a schematic symbol for the Arduino Pro Mini
board that I planned to use, so I created one, along with its matching

104

footprint. In the layout, I have included four mounting holes. To avoid getting
error messages from the DRC, I have associated the mounting hole footprints
with mounting hole symbols in the schematic.

Another consideration was how to deal with the LED matrix modules. I
was not able to find a symbol and footprint for this device, so I had two
options:

1. Create a custom symbol and footprint, as I did with the Arduino Pro
Mini module.

2. Ignore the module, and concentrate on the headers.

Since I went with option 1 for the Arduino module, I opted for option 2
for the LED modules. Instead of treating each LED module as a single device,
I treated it as a set of two-pin headers. My objective, then, was to wire the
header symbols correctly and place their footprints precisely on the PCB (see
the discussion on the PCB below).

Below is the layout of the PCB, as it will be at the end of Chapter 10.3:

114.9350 mm

oooog-= ooood= - [SXeXeXe)[e] 3j s[coood
LED1_OUT | LED2_0UT LED4_OUT)
~ _HTIW [Q3und)! -~

E

E
o
I
0
=3
S
©

3 X 2 5

L3N

[cooomx

Figure 10.1.3: The project layout.

The dominating feature of this board is its shape. I wanted to
experiment with a shape that uses “arms” that extend from its center to hold
the LED modules rather than a conventional rectangular shape. I did not do
this to reduce the manufacturing cost. Even though the shape you see above
has two significant parts of the substrate material removed, the
manufacturing cost relates to the all-inclusive height and width of the board
(you can see those dimensions in the figure above). But I do think that the
board with the four arms extending from the center looks great. Along with
the rounded edges and the button notch at the bottom, I am satisfied with the
physical design aspect of the board.

105

A significant challenge for the layout design of this board is the position
of the pin headers for the LED modules. As I mentioned above, I decided to
treat the LED modules as a set of two headers each (input and output). The
positions of those headers must be very accurate. If the headers are too far
from their neighbors, the four-module display will not look continuous but as
four individual displays. If they are too close, the assembly will not be
possible as there will not be enough space on the board to attach adjacent
modules.

As a result, this project will give you the opportunity to use all of
KiCad’s measurement and alignment tools to make sure that the end product
looks beautiful and works.

Below you can see the Bill of Materials for this project, as I have
extracted it from the KiCad project (learn how later in this book):

Referen | Value Footprint
ce
H1-H4 | MountingHole MountingHole:MountingHole_2.5mm

Connector_PinHeader 2.54mm:PinHeader 1

J1 LED1_IN .

x05_P2.54mm_Vertical
]2 Barrel_Jack Connector_BarrelJack:BarrelJack_Horizontal

Connector_PinHeader 2.54mm:PinHeader 1
]3 LED1_OUT)

x05_P2.54mm_Vertical

Connector_PinHeader 2.54mm:PinHeader 1
J4 LED2_IN)

x05_P2.54mm_Vertical

Connector_PinHeader 2.54mm:PinHeader_1
J5 LED2_OUT)

x05_P2.54mm_Vertical

Connector_PinHeader_2.54mm:PinHeader_1
J6 LED3_IN)

x05_P2.54mm_ Vertical

Connector_PinHeader_2.54mm:PinHeader_1
J7 LED3_OUT)

x05 P2.54mm_Vertical

Connector_PinHeader_2.54mm:PinHeader_1
J8 LED4_IN)

x05_P2.54mm_ Vertical

Connector_PinHeader 2.54mm:PinHeader 1
J9 LED4_OUT)

x05_P2.54mm_Vertical

Resistor THT:R _Axial DIN0204 L3.6mm_D1
R1,R2 10K

.6mm_P7.62mm_Horizontal

106

S1,52 1825967-1 1825967-1:5SW_1825967-1

S3 S512D07VG4 SS12D07VG4:SW_S512D07V G4
ArduinoProMiniS ,) o

Ul - DesktopLibrary:ArduinoProMiniCustom
imple

Table 10.1.1: The Bill of Materials for this project.

Apart from the custom symbol and footprint Arduino Pro Mini, I used
Snapeda to find the symbol-footprint pairs for the two buttons (51 and S2) and

the power barrel connector (S3).
Let’s begin with the schematic design in the next chapter.

107

Part 11 : Project - MCU datalogger

108

1. Project - Introduction
Welcome to Part 11. In this Part, you will design a printed circuit board for
a microcontroller data logger. The data logger is based on an Atmega 328P-AU
microcontroller and is supported by two EEPROMs and a real-time clock.
Additional components on the board, such as status LEDs with their
supporting resistors, two crystal oscillators, connectors, and capacitors.
You will use SMD packages for most components on a rectangular two-
layer board with mounting holes on the four corners.
The project highlights are:
1. You will use Git to capture the history of the project’s development.
2. You will design two versions of the PCB: one with two layers and
one with four layers. Both will use data from the same schematic design.
KiCad, on its own, does not allow the creation of more than one layout for
a schematic. Git makes this possible with the use of branches. This project will
allow you to practice this aspect of Git-powered PCB design with KiCad.

The schematic design contains components distributed across two sheets.

You can see the final schematic below (sheet 1):

U

i

g4
—
—
0000

99.0-11435-9252647¢93¢)
T I

Figure 11.1.1: Sheet 1 of the project’s final schematic design.

109

In Sheet 1, I have placed the main components of the board. Sheet 2
contains the connectors:

J1 J3
12C Serial
1

—L 6N -—L oenp
-LD\/LL -LD\/L'\

-3 5sDA -3 aRrx

—4 nsck —4 p1x

2

GPIO

—1 o602

—2 63 in

-—3 5Dk ICSP

—4 505 MISo gL 2 Avec
—2 506 scko-2 4 qmosi
-5 507 RESETO-2 6 QGND
—L 08

-8 neno

-—19 Vcce

Figure 11.1.2: Sheet 2 of the project’s final schematic design.

In the schematic design, I have used a combination of line wires and net
labels. Other than the distribution of the components across the two sheets,
the techniques I have used to draw the schematic should be familiar to you
from previous projects.

The most exciting aspect of this project is the layout design: you will
design two versions of the PCB. A two-layer and a four-layer version. You can

see the final version of the two-layer PCB layout below:

241C1025
L & ol
30 2% Oiuf.‘
.v —in e o

RuLC1025 '01 |'-4 o‘)
oo |© |

e 02

nun | l [-] Py

u‘ ||
a2 e ﬂ.
o | 1

Net-(U2-Pad1)

Yol

— 5
i

G\&' EX. T

] @@@@@@@QM@JQ |

Figure 11.1.3: The project’s final layout design (two layers).

You can see the final four-layer PCB below:

110

:3)9 . . ~g723‘—'] 5‘1/ \

m:l‘soleI
Q10p.910IgX

5 8 /GND VCC GNDVCG.RX TX ¥

[=1=] 6—@669 0 00|Zmeoo 0 @
_

Figure 11.1.4: The project’s final layout design (four layers).

The main objectives of this project are:
1. To help you practice skills you acquired in previous projects.
2. To use Git in a non-trivial project to extend KiCad’s use cases in a
single-schematic and multi-layout project.
3. To gain experience in creating multi-layer PCBs.
Below you can see the Bill of Materials for this project, as I have
extracted it from the KiCad project (learn how later in this book):

Re Value Footprint
ference

BT Battery Connector_PinHeader_2.54mm:PinHea

1 der_1x02_P2.54mm_Vertical

C1

, 0.1uF Capacitor_SMD:(C_0805_2012Metric

C4

C2

, 22pF Capacitor_SMD:C_0805_2012Metric

Cc3

c5 100nF Capacitor_SMD:(C_0805_2012Metric

D1

, LED LED_SMD:LED_0805_2012Metric

D2

H1 MountingHol

-H e 9 MountingHole:MountingHole_2.1mm

4

12 Conn_01x09_ Connector_PinHeader_2.54mm:PinHea
Male der_1x09_P2.54mm_Vertical

111

Y1

Y2

Conn_01x04_

Male

Conn_02x03_

0dd_Even

10K

4.7K

330
DS1337S+
24LC1025

ATMEGA328P-
AU

32.768 KHz

16 MHz

Connector_PinHeader_2.54mm:PinHea
der_1x04_P2.54mm_Vertical

Connector_PinHeader_2.54mm:PinHea
der_2x03 P2.54mm_Vertical

Resistor_SMD:R_0805_2012Metric

Resistor_SMD:R_0805_2012Metric

Resistor_SMD:R_0805_2012Metric

Footprints:S0IC127P600X175-8N

Package_S0:S0IC-8_5.23x5.23mm_P1.
27mm

Footprints:QFP80P900X900X120-32N

Crystal:Crystal_SMD_5032-2Pin_5.0
x3.2mm_HandSoldering
Crystal:Crystal_SMD_5032-2Pin_5.0
x3.2mm_HandSoldering

Table 11.1.1: The Bill of Materials for this project.

I used Snapeda to find the symbol-footprint pairs for U4. You should be

able to find all other symbols and footprints in KiCad's libraries.

In the next chapter, you will begin work on this project by creating a

new KiCad project and Git repository.

112

1. Project - Introduction

Welcome to Part 12 of this book. In the chapters that follow, you will
design an ESP32 development board. To assist you with the design process,
you will use the reference schematic design from Espressif, the original
designer and manufacturer of the original ESP32 dev kit module.

By working on this project, you will learn how to use and modify reference
designs. The ESP32 is a widely used and understood board. It is compact, yet
packs significant computing power and capabilities. It’s circuit board is more
complex compared to those in the previous projects of this book, but not to
complex to make this project long and tedious.

Below you can see the layout design as it will look once the project is

completed.

113

2noitsiolgqxd

moa.svolgxy

(=]
=z
=
Ew
i

ol

| N AP AN OIS~ AV AV AV VI GO~ VO SN - SOOI = SO~ SO SV~ SO - SO
.

Andidved SE923
RAFH62u

39
GND

|

fo
|

Figure 13.1.1: The ESP32 development kit clone project deliverable.

In this instance of the development kit, I have retained the form factor and
shape of the original ESP32 development kit. This is a four-layer board, with
the ESP32 module at the top with its integrated antenna extending outside of
the board, the power and serial communications port at the bottom, and the
pin headers along the sides. The board also features the two control buttons,
“BOOT” and “EN”, and uses SMD components on the front and back. Here’s

a view of the reference layout:

114

000000000000 000000FC |
I = “. - m =
|| |

27.9mm

BRRRRRRRRERERRNNNEE ™ s = e .
0000000000000000000 |

-

48.2mm

Figure 13.1.2: A view of the ESP32 development kit reference layout.

Once you understand the design elements of this board, you will be able to
modify its shape and component placement to match the requirements of
your project. For example, in my instance of the board, I have chosen to place
the voltage regulator in the back of the PCB, even though in the reference
design the regulator in is the front. I did this because I wanted to allow more
room in the front for small components, like the resistors, to make assembly
by hand easier.

Below you can see the ﬁna} schematic. |

115

Figure 13.1.3: The ESP32 development kit clone project schematic.

Thanks to the ESP32 module’s highly integrated design, the board that
hosts the module (i.e. the development kit) is relatively simply. In the instance
of the development kit design that you see above, I have arranged the
components in five functional groups, and I have drawn all details from the

original Espressif reference schematic design. You can see the reference

schematic design below:

‘ower Supply

Figuré 13.1.4: The ESP32 developrﬁént kit reference schematic.

You will learn more about this in chapter 2.

Below you can see the 3D rendering of the development kit.

Figure 13.1.5: A 3D rendered view of the project deliverable.

The 3D rendering contains models for all components and is accurate in
terms of what the final manufactured board would look like.

The process of customising an existing board begins by finding the original
schematic and layout designs. In the case of the ESP32 development kit, you
can find the official reference designs in the Espressif website (https:/ /

116

www.espressif.com /en/support/documents / technical-documents). I have
used the references design for the ESP32-DevKitC-v4 board. You can use the
search filter to find this design (or try my search URL “https:/ /
www.espressif.com/en/support/documents/ technical-documents?
keys=ESP32-Devkit”)

.
@ [D v < wf 0 www.espressif.com/en/support/documents/technical-documents?keys

@ ESPRESS'F Products Solutions Support Ecosystem Company JoinUs Contact Us Q 3

Support > Documents > Technical Documents >

Q, ESP32-Devkit \ (] [Documentation Feedback J [Subscribe]

‘= Filter £y Clear Found 5 results Expand all + oy
Title Version Release Date Download

ESP32-S3 Series +

ESP32-S2 Series + + ESP32-DevKitM-1 User Guide latest 2021.02.24 =
ESP32-C3 Series +

i + [ESP32-DevKitS-V1.1 Reference

ESP32 Series + Design Vid o 2020.04.08 &,
ESP8266 Series +

Other + + ESP32-DevKitS(-R) User Guide latest 2020.03.20 D/'

x ESP32-DevKitC-V4 Reference
Design r2.1

Ordering Information V4121 2020.01.15 3.

Changed Info Schematics, PCB layout, Gerber and L}"

e BOM files of ESP32-DevKitC-V4.
Certification Info

Data Sheet + ESP32-DevKitC Getting Started

7
Geting Started Guide latest 2017.07.28 [

Desian Guideline
Figure 13.1.6: The source documentation and designs for this project.

Download the ZIP file that contains everything you will need for this
project: the schematics, the PCB layout, and the BOM. The ZIP also contains a
set of Gerber files which you do not need (you will generate a new set at the
end of the project).

The reference BOM is very important because it gives you all the
components and their values that you will need for your custom board. These
components and values are tested by Espressif and used in millions of
manufactured board, so you can be confident that they will work. I used the
reference BOM to help me select symbols and footprints for my instance of the
board. The project BOM that you see below contains information that I

sourced from the reference BOM.

Refere Value Footprint
nce

C1,C2,C21 |22uF/10V(20%) Capacitor_SMD:C_0201_0603Metric

117

C9, C14, C19,

C22
C15

C20

D1

D3

D4, D5, D6

J1

J2,]3

MOD1

Q1, Q2
R2, R24
R7, R18
R11, R21,
R22

R23
R25
R26

SW1, SW2

Ul

U2

0.1uF/50V(10%)

0.1uF/50V(10%)
(NC)

4.7uF /6.3V(10%)
LED

D_Schottky
D_TVS

USB_B_Micro
Conn_01x19_Male

ESP32-WROOM-32

MMSS8050-H-TP
2K(5%)
OR(5%)

10K(5%)

10K(5%)(NC)
22.1K(5%)
47 5K(5%)

SW_Push

CP2102N-A01-
GQFN28

AMS1117-3.3

Capacitor_SMD:C_01005_0402Metric

Capacitor_SMD:C_01005_0402Metric

Capacitor_SMD:C_01005_0402Metric
LED_SMD:LED_0603_1608Metric
Diode_SMD:D_SOD-323
Diode_SMD:D_SOD-523
Connector_USB:USB_Micro-
AB_Molex_47590-0001
Connector_PinHeader_2.54mm:PinHe
ader _1x19 P2.54mm_Vertical
digikey-footprints:ESP32-
WROOM-32D
digikey-footprints:SOT-23-3
Resistor_ SMD:R_01005_0402Metric
Resistor SMD:R_01005_0402Metric

Resistor SMD:R_01005_0402Metric

Resistor_SMD:R_01005_0402Metric
Resistor_SMD:R_01005_0402Metric
Resistor SMD:R_01005_0402Metric
Button_Switch_SMD:SW_SPST_B3S-1
000

Package DFN_QFN:TQFN-28-1EP_5x
5mm_P0.5mm_EP2.7x2.7mm
Package_TO_SOT_SMD:SOT-223-3_Ta
bPin2

Table 13.1.1: The Bill of Materials for this project.

The BOM shows several SMD components that are very small, such as the

0402 resistors. If you plan to assemble your custom board by hand, you

should consider the difficulty of working with such small components. But,

since this is your custom board, you can choose to replace those small

components with alternatives that you feel more comfortable to work with.

118

This is just an example of how you can modify a reference design to fit your
specific requirements.

The main objectives of this project are:

1. To help you practice skills you acquired in previous projects.

2. To gain experience in the design of a PCB based on an existing
reference design.

3. To gain experience in creating dense, four-layer PCBs.

I used Snapeda to find the symbol-footprint pairs for MOD1 (the ESP32
module). You should be able to find all other symbols and footprints in
KiCad’s libraries.

Let’s begin.

119

	Introduction
	Part 2: Getting started with KiCad 6
	Introduction
	KiCad Project Manager (main window)
	Overview of the individual KiCad apps
	Paths and Libraries
	Create a new project from scratch
	Create a new project from a template
	KiCad 6 on Mac OS, Linux, Windows

	Part 3: Project - A hands-on tour of KiCad - Schematic Design
	Part 4: Project- A hands-on tour of KiCad - Layout
	Introduction to layout design and objective of this section

	Part 9: Project - Design a simple breadboard power supply PCB
	Introduction

	Part 10: Project - A 4 x 8 x 8 LED matrix array
	Part 11 : Project - MCU datalogger
	Project - Introduction

	Project - Introduction

