
Z c o m m o d o r e

' COMPUTER

COMMODORE 64

Publié par
COMMODORE INTERNATIONAL, LTD.
Computer Systems Division
950 Rittenhouse Road
Norristown, PA 19403
U.S.A.

Copyright © 1981. Commodore International and Avalanche Productions. Tous droits
réservés. Rien de cette publication ne peut être reproduit, enregistré dans un système de
recherche documentaire ou transmis sous quelque forme ou par quelque moyen que ce soit,
par voie électronique, mécanique, de photocopie, d ’enregistrement magnétique ou de toute
autre manière, sans l’autorisation écrite préalable de Commodore International.

Imprimé en Allemagne.

TABLE DES MATIERES

Chapitre Page

Introduction ... VII

1 Mise en p lace ... 1

2 Mise en se rv ice ... 13
Clavier ... 14
Chargement et sauvegarde de programmes............................ 18
La commande PRINT... 22
Calculs ... 22

3 Initiation à la programmation BASIC..................................... 31
G oto ... 32
Conseils d’éd ition... 34
IF ...TH E N ... 38
Boucles FOR . . . N EXT... 39

4 BASIC avancé... 41
Introduction ... 42
Animation simple-Boucles imbriquées.................................. 43
INPUT... 45
G E T ... 48
Nombres aléatoires... 49
Jeu de devinettes... 51
Jeu de dés ... 53
Graphiques aléatoires... 53
Fonctions CHR$ et ASC... 53

5 Commandes graphiques et couleurs avancées.................... 55
Couleurs et graphiques.. 56
Couleurs d’affichage (PRINT)... 56
Codes de couleurs CHR$... 58
PEEKetPOKE... 60
Mémoire de l’écran... 63
Encore un je u ... 65

iii

6 Graphiques de sylphes.. 67
Introduction aux sylphes.. 68
Création de sylphes.. 69
Arithmétique binaire.. 77

7 Création de sons avec le COMMODORE 64 81
La structure d’un programme sonore...................................... 82
Exemple d’un programme sonore.. 84
Réglages importants du son.. 86
Effets sonores... 90

8 Traitement avancé des données.. 93
READ et DATA... 94
M oyennes... 96
Variables à indices.. 97
Tableaux à une entrée..
DIMENSION... 100
Jets de dés simulés.. 100
Tableaux à deux entrées.. 100

iv

Annexes

In troduction.. 106

A: Accessoires du COMMODORE 64 et software.......................... 107
B: Fonctionnement avancé à cassette.. 110
C: BASIC COMMODORE 6 4 ... 112
D: Abréviations des mots-clés BASIC.. 129
E: Codes d’affichage sur l’écran.. 131
F: Codes ASCII et CHR$... 134
G: Mémoires de l’écran et des couleurs.. 137
H: Dérivation de fonctions mathématiques................................... 139
I: Sortie de broches des périphériques d’entrée/sortie.............. 140
J: Programmes à essayer... 143
K: Conversion de programmes BASIC standards en

BASIC COMMODORE 6 4 .. 148
L: Message d’erreurs... 150
M: Carte des registres des sylphes... 153
N: Réglages de commande de son du COMMODORE 64 155
O: Valeur des notes de musique.. 158
P: Occupation de la mémoire du COMMODORE 6 4 160
Q: BASIC COMMODORE 64: brève description (3ème page de

couverture)

Page

INTRODUCTION
Félicitations pour votre achat de l’un des meilleurs ordinateurs du

monde. Vous êtes à présent le fier propriétaire du COMMODORE 64.
Commodore est connue comme une société informatique amicale et il
fait partie de cette amitié de vous faciliter la lecture, l’utilisation et la com­
préhension des manuels d’instruction. Le MANUEL D’UTILISATION
COMMODORE 64 est conçu pour vous fournir tous les renseignements
dont vous avez besoin pour installer correctement votre équipement,
vous familiariser avec le fonctionnement du COMMODORE 64 et per­
mettre un départ simple et agréable dans l’apprentissage de la confection
de vos propres programmes. Pour ceux qui ne souhaitent pas être tour­
mentés par l’apprentissage de la programmation, nous avons placé tous
les renseignements dont vous avez besoin pour utiliser les programmes
Commodore ou d’autres programmes préconfectionnés et/ou cassettes
de jeux (software de tiers) dès le début. Ceci signifie que vous n’avez pas
besoin de parcourir la totalité du manuel pour commencer à utiliser
l’appareil.

A présent, examinons certaines des caractéristiques excitantes offer­
tes par votre COMMODORE 64. Tout d’abord, lorsque l’on en viendra aux
GRAPHIQUES, vous disposerez du synthétiseur d’images le plus avancé
de l’industrie des micros-ordinateurs. Nous l’appelons SPRITE
GRAPHICS et il vous permet de concevoir vos propres images dans 4
couleurs différentes, tout comme celles que vous connaissez des jeux
vidéo. Etdeplus leSPRITE EDITORvouspermetd’animersimultanément
jusqu’à 8 différents niveaux d’image. Vous pouvez déplacer vos créations
où que ce soit sur l’écran et même passer une image devant ou derrière
une autre. Votre COMMODORE 64 dispose même d’une détection de
collision automatique qui donne à l’ordinateur l’instruction d’entre­
prendre la manoeuvre que vous souhaitez lorsque les sylphes se heurtent
les uns contre les autres.

Ensuite, le COMMODORE 64 possède des effects musicaux et sonores
incorporés qui peuvent rivaliser avec nombre de synthétiseurs musicaux
bien connus. Cette partie de votre ordinateur vous fournit trois voix in­
dépendantes, chacune sur une gamme de type piano complète à 9 octa­
ves. D’autre part, vous disposez de 4 formes de signaux différentes (dent
de scie, triangle, impulsion variable et bruit), d’un générateur ADSR pro­
grammable (montée, descente; appui, relâchement), d ’un générateur
d’enveloppe, de filtres passe-haut, passe-bas et passe-bande programm­
ables pour chaque voix et de commandes de volume et de résonnance
variables. Le COMMODORE 64 vous permet de raccorder votre sortie

v ii

audio à la plupart des systèmes d’amplification de haute qualité si vous
souhaitez jouer votre musique sous forme d’une reproduction sonore
professionnelle.

Pendant que nous sommes sur le sujet de la connexion du COMMO­
DORE 64 sur d’autres équipements ... votre système peut être étendu en
ajoutant des accessoires intitulés périphériques au fur et à mesure de la
croissance de vos besoins de calcul. Certaines de vos options com­
prennent des appareils,tels qu’un enregistreur DATASSETTE* ou jusqu’à
5 unités de stockage et d’entraînement de disques VIC 1541 pour les pro­
grammes que vous constituez et/ou passez. Si vous disposez déjà d’un
entraîneur de disques VIC 1540, votre revendeur peut l’adapter pour qu’il
soit utilisé avec le COMMODORE 64. Vous pouvez ajouter une impri­
mante à matrices VIC pour vous fournir des exemplaires imprimés de vos
programmes, lettres, factures, etc. Finalement, si vous êtes l’une de ces
personnes intéressées par la grande variété du software d’application
disponible en CP/M**, le COMMODORE 64 peut être équipé d’un micro­
processor enfichable Z-80.

Le fait que ce manuel d’utilisation contribuera à développer votre com­
préhension des ordinateurs, est tout aussi important que le matérial
disponible. Il ne vous dira pas tout ce qui est connu sur les ordinateurs,
mais il vous renverra à une grande variété de publications pour des in­
formations plus détaillées sur les sujets présentés. Commodore vous
souhaite une grande satisfaction dans l’utilisation de votre nouveau
COMMODORE 64. Et pour avoir de la satisfaction, pensez-y: la pro­
grammation n’est pas le genre de chose que vous pouvez apprendre en
un jour. Ayez de la patience en progressant dans la lecture du manuel
d’utilisation. Avant de commencer, prenez quelques minutes pour
remplir et envoyer la carte de propriétaire/d’enregistrement qui est jointe
à votre ordinateur. Elle vous assurera que votre COMMODORE 64 est
correctement enregistré. Bienvenue dans un tout nouveàu monde de
distraction!

REMARQUE:
De nombreux programmes sont en cours de développement pendant

que ce manuel est sous presse. Veuillez consulter votre revendeur
Commodore local qui vous tiendra au courant de l’abondance des pro­
grammes d ’application existants pour le COMMODORE 64 dans le
monde entier.

* DATASSETTE est une marque déposée de Commodore Business Machine Inc.
** CP/M est une marque déposée de Digital Research Inc. Spécifications soumises à modi­

fication.

viii

CHAPITRE

MISE EN PLACE

DEBALLAGE ET BRANCHEMENT DU COMMODORE 64
Les instructions suivantes vous indiquent pas par pas comment rac­

corder le COMMODORE 64 à votre appareil de télévision, au système ou
au moniteur et à vous assurer que tout fonctionne correctement. Avant
de connecter quoi que ce soit sur l’ordinateur, contrôlez le contenu de la
boîte du COMMODORE 64. En dehors de ce manuel, vous trouverez les
articles suivants:

1. COMMODORE 64
2. Alimentation (coffret noir avec le cordon d ’alimentation)
3. Câble d’antenne

Si l’un de ces articles manque, contrôlez encore une fois sans tarder le
contenu avec votre revendeur pour le compléter. En premier lieu,
examinons la disposition des différentes connexions sur l’ordinateur et
leur fonctionnement.

CONNEXIONS DU PANNEAU LATERAL

1. Prise de courant. La fiche du câble qui connecte l’ordinateur avec
l’alimentation est branchée ici.

2. Interrupteur d’alimentation.
3. Ports de jeu. Chaque connecteur de jeu peut recevoir une manette, un

contrôleur de jeu ou un crayon lumineux.

CONNEXIONS ARRIERES

4. Fente pour modules. La fente rectangulaire à gauche est destinée aux
programmes ou jeux enfichables.

5. Connecteur TV. Possibilité de connecter l’ordinateur par l’entrée
d’antenne (75 Ohm). Le signal contient le son et l’image.

6. Sortie audio et vidéo. Ce connecteur fournit directement le son qui
peut être raccordé à un système audio de haute qualité et un signal
vidéo qui peut être amené à un moniteur.

7. Port sériel. Vous pouvez raccorder une imprimante ou une station de
disquettes simple directement au COMMODORE 64 par l’inter­
médiaire de ce connecteur.

2

8. Interface cassette. Un enregistreur DATASSETTE peut être fixé à
l’ordinateur de manière que vous puissiez sauvegarder les infor­
mations entrées pour les utiliser plus tard.

9. Port utilisateur. Entrée/sortie librement programmable et connexion
pour modules enfichables tel que l’interface RS 232.

3

INSTALLATION
CONNEXIONS A VOTRE TV

Référez-vous au schéma ci-dessous pour la connexion à votre TV.

1. Utilisation de l’entrée antenne UHF
A l’aide du câble de TV joint connectez le connecteur TV (no 5) au dos
du COMMODORE 64 avec l’entrée antenne UHF de votre TV. Enlevez
l’antenne avant. Fixez votre appareil au canal 36.

UHF

Alimentation

Fiche d ’alimentation

2. Sortie vidéo
L’image optimale est obtenue par un moniteur. A ce fait utilisez un
câble vidéo avec d ’un côté une fiche de diode à 5 broches (DIN 41524)
pour la connexion no 6 du COMMODORE 64 et de l’autre côté une
fiche vidéo (DIN 45322) pour votre moniteur. Au cas ou votre TV
dispose d’une prise vidéo, vous pouvez l’utiliser également comme
moniteur, veillez seulement à ce que le connecteur vidéo de votre TV
est défini comme entrée. Si on utilise un recorder vidéo cela se fait
normalement par un potentiel auxiliaire de 12 V qui se branche au pin
1 de la fiche vidéo de la TV.

4

Votre COMMODORE 64 n’a pas ce potentiel. Faites donc installer par
un spécialiste TV un commutateur adéquat. Il existe des TV ou il suffit
d ’introduire un pont de fil dans la fiche vidéo, du fait qu’il y a des télé­
viseurs qui ont prévu ce potentiel auxiliaire de 12 V dans le pin 5 de la
prise vidéo. Utilisez donc cette entrée très prudemment. Le potentiel
auxiliaire ne doit en aucun cas toucher les sorties de votre COMMO­
DORE 64. L’ordinateur serait détruit immédiatement. Confiez ce
travail seulement à un spécialiste.

D’habitude vous devez enlever le câble vidéo si vous recevez des
émissions de TV normales.

Entrée vidéo
=c=a

U

Fiche d ’alimentation

oooo
oooo |ooo| r a

Alimentation

3. Branchement au secteur
Connectez votre alimentation avec le COMMODORE 64 (prise 1) et un
branchement au secteur de 220 V/50 Hz.

5

4. Connexions optionnelles
Vu que le COMMODORE 64 fournit un canal audio de haute fidélité,
vous pouvez souhaiter l’utiliser par l’intermédiaire d’un amplificateur
de qualité.
Le signal de son est pris également de la prise 6 (voir annexe I pour
l’occupation des contacts de fiches).

SORTIE
AUDIO/VIDEO

4

6

Comme vous le savez certainement, vous avez la possibilité de bran­
cher des périphériques comme la station de disquettes (Floppy Disk)
VC 1541 ou l’imprimante VC 1525.

7

UTILISATION DU COMMODORE 64
1. Mettre l’ordinateur sous tension en utilisant l’interrupteur à bascule

situé sur le côté droit.
2. Après quelques instants, les informations suivantes sont affichées sur

l’écran TV:

3. Si votre télévision possède un bouton de réglage fin manuel, réglez
l’image jusqu’à ce que vous obteniez une image claire.

4. Vous pouvez également souhaiter régler les commandes de cou leur et
de contraste de l’appareil de télévision pour obtenir la meilleure re­
présentation. Vous pouvez utiliser la procédure de réglage de couleur
décrite ci-dessous pour obtenir un bon réglage. Lorsque vous
obtenez une image pour la première fois, l’écran doit apparaître
généralement bleu foncé avec une bordure et les caractères bleu clair.

Si vous n’obtenez pas les résultats escomptés, contrôlez encore une
fois les câbles et connexions. Le tableau ci-après vous aidera à localiser
les problèmes.

8

TABLEAU DE DEPANNAGE

Symptôme Cause Remède

Voyant indicateur
pas allumé

L’ordinateur n ’est pas
sous tension

Veiller à ce que l’ interrupteur
d ’alimentation soit sur la position
«ON»

Le câble d ’alimentation
n ’est pas branché

Contrôler la prise de courant pour
savoir si le câble d ’alimentation
est bien enfoncé ou branché.

La boîte d ’alimentation
n ’est pas branchée

Contrôler le raccord et la prise
de courant au mur

Fusible défectueux dans
l’ordinateur

Porter l’ordinateur chez le reven-
deurautorisé pourfa ire échanger
le fusible

Affichage sur écran
de visualisation

Sélectionné un mauvais
canal sur la TV

Essayer un autre canal pour
l ’image (3 ou 4)

Couplage incorrect Le calculateur est couplé aux
bornes de l ’antenne VHF

Câble vidéo non branché Contrôler la connexion du câble
de sortie de l’appareil de télé­
vision

Ordinateur réglé sur le
mauvais canal

Régler l ’ordinateur sur le même
canal que celui de l’appareil de
télévision (3 ou 4)

Grille aléatoire sur
l ’appareil de télévision,
la cartouche étant en place

La cartouche n’est pas
correctement insérée

Reinsérer la cartouche après
avoir coupé l’alimentation

Image sans couleur Mauvais réglage de
l ’appareil de TV

Modifier le réglage de l ’appareil
de télévision

Image d ’une mauvaise
couleur

Mauvais réglage de la
couleur sur l’appareil TV

Régler les commandes de cou­
leur/de contraste/de luminosité
sur l’appareil TV

Image avec excès
de bruit de fond

Volume sonore de la TV
trop élevé

Ajuster le volume sonore de la TV

Image en ordre mais
pas de son

Volume sonore de la TV
trop faible

Ajuster le volume sonore de la TV

Sortie auxilia ire mal
branchée

Raccorder la prise de son à
l’entrée auxilia ire de l’am pli­
ficateur et mettre sur l ’entrée
auxiliaire

9

CURSEUR

Le carré scintillant à côté de READY est intitulé le curseur et
affiche sur l’écran la position et les lettres que vous tapez. Au fur et à
mesure que vous tapez, le curseuravanced’un espace lorsque la position
originale du curseur est remplacée par le caractère que vous tapez.
Essayez de taper sur le clavier et observez comment les caractères que
vous tapez sont affichés sur l’écran de la télévision.

REGLAGE DE LA COULEUR
Il existe une façon simple d’obtenir un échantillon des couleurs sur
l’appareil de télévision de manière que vous puissiez aisément le régler.
Même si vous ne vous êtes pas encore familiarisé avec le fonctionnement
de l’ordinateur, il vous suffit de suivre les instructions et vous consta­
terez combien il est facile d’utiliser le COMMODORE 64. Tout d’abord,
regardez sur le côté gauche du clavier et cherchez la t o u c h e I l
s’agit de l’abréviation de ConTRoL et elle est utilisée en liaison avec
d’autres touches pour ordonner à l’ordinateur d’accomplir une tâche
spécifique.

Pour utiliser une fonction de commande, vous maintenez enfoncée la
touche tout en appuyant sur une seconde touche. Essayez ceci:
Maintenez la to u ch e B B l enfoncée tout en appuyant sur la touche Q .
Ensuite, relâchez les deux touches. Rien d’apparent ne doit se présenter
mais, si vous touchez à présent n’importe quelle autre touche, l’écran
indiquera le caractère affiché de façon inverse et non de façon normale
- comme le message d’ouverture ou quoi que ce soit que vous ayez tapé
auparavant.

Maintenez la touche EE2ED enfoncée. Que se passe-t-il? Si vous
avez correctement effectué la procédure ci-dessus, vous constaterez
qu’une barre bleu clair se déplace à travers l’écran et ensuite descend à
la ligne suivante tant que la touche ^ ^ 9 ^ est pressée.

10

o o m rm o d o r * oB

i : 3 S "Jü y o_ à__
BUC WHT RED CYN PUR GRN BLD * YEL . *£$? .

- O * W - 6 =R = X * V - U - I - O
■ a â m i o e n B Q Û D o a B Q O B 8 0
p r « u N
f j STOP j x c a o p s g H K L

G » a » 0 9 B Q O U D O ! O S O S a

| C * P W * * * * - 2 - H ~ C - V - B - I M I V t <

H É E t a C S B Ë W S U □ f i a S s

I

Après cela, maintenez enfoncée tout en appuyant sur l’une des
autres touches numériques. Chacune d’elles possède sa propre couleur.
Tout ce qui est affiché à partir de ce point le sera dans cette couleur. Par
exemple, maintenez Q Q enfoncée et appuyez sur la touche Q et
relâchez les deux. A présent, maintenez ^ E B f f l er,f ° ncée-

Observez l’image. La barre est maintenant jaune! Par analogie, vous
pouvez amener la barre sur toute autre couleur indiquée sur les touches
numériques en maintenant ^^ fle n fo n cé e et en appuyant sur la touche
appropriée.

* * * * COMMODORE 6 4 B A S I C V2 **## °
6 4 K. RAM SYS TEM 3S31 1 B A S I C BVTES F R E E

RERDV

11

Faites changer la barre sur certaines autres couleurs et ensuite réglez
les commandes de couleur et de contraste de votre appareil TV de
manière que l’image corresponde aux couleurs que vous avez sé­
lectionnées.

L’image doit afficher à peu près les couleurs suivantes:

A présent, tout est correctement réglé et fonctionne parfaitement.
Leschapitressuivantsvousdonnentuneintroduction au langage BASIC.
Cependant, vous pouvez immédiatement commencer en utilisant cer­
taines des applications et jeux prérédigés disponibles pour le COMMO­
DORE 64 sans connaître quoi que ce soit à la programmation de l’ordi­
nateur.

Chacun de ces programmes contient des informations détaillées sur
leur utilisation. Il est néanmoins conseillé de lire les premiers chapitres
de ce manuel pour se familiariser avec les bases de fonctionnement de
votre nouveau système.

12

CHAPITRE

MISE EN SERVICE
• Clavier
• Chargement et sauvegarde de

programmes
• La commande PRINT
• Calculs

13

CLAVIER
Dès que vous avez tout installé et réglé, prenez quelques minutes

pour vous familiariser avec le clavier, étant donné qu’il est pour vous le
moyen le plus important de communication avec le COMMODORE 64.

Dans l’ensemble le clavier ressemble beaucoup à celui d ’une machine
à écrire standardisée. Cependant, il existe un certain nombre de nou­
velles touches qui commandent les fonctions spécialisées. Vous
trouverez ci-dessous une brève description des différentes touches et la
façon dont elles fonctionnent. Le fonctionnement détaillé de chaque
touche sera expliqué plus tard.

La to u c h e ^ ^ ^ H signale à l’ordinateur de faire attention aux informa­
tions que vous frappez et de mettre ces informations en mémoire.

La touche KUIU fonctionne comme celle d’une machine à écrire
standard. De nombreuses touches sont capables d’afficher deux lettres
ou symboles et deux caractères graphiques. Dans le mode «case
supérieure/inférieure», la touche vous fournit les caractères
standards de la case supérieure. Dans le mode «case supériëure/
graphique», la touche affiche le caractère graphique représenté à
droite sur la touche. Dans le cas de touches de fonctions spéciales, la
touche ^ ^ 3 vous fournit la fonction marquée sur la partie supérieure de
la touche.

14

EDITION

Personne n’est parfait et le COMMODORE 64 en tient compte. Un
certain nombre de touches d’édition vous permet de corriger les fautes
de frappe et de déplacer les informations sur l’écran.

Il existe deux touches repérées (¡¡¿JJ (CuRSoR), l’une ayant des
flèches vers le haut et vers le bas, l’autre ayant des flèches vers la gauche
et vers la droite . . . Vous pouvez utiliser cette touche pour déplacer le
curseur vers le haut et vers le bas ou vers la gauche et vers la droite. Dans
le mode normal, les touches vous permettent de déplacer le
curseur vers le bas et vers la droite. L’utilisation de la touche EŒB et des
touches Q233 permet au curseur d’être déplacé soit vers le haut, soit vers
la gauche. Les touches du curseur possèdent un dispositif de répétition
spécial qui fait bouger le curseur jusqu’à ce que vous relâchiez la touche.

INST/DEL

Si vous frappez la to u c h e ^ ^ E ^ , le curseur se déplace d’un espace
en effaçant (DELeting) le caractère que vous avez précédemment tapé. Si
vous vous trouvez au centre d ’une ligne, le caractère à gauche est sup­
primé et les caractères à droite se déplacent automatiquement pour
combler l’espace.

La to u ch e Q Q |^ ||3 i||||e d (décalée) vous permet d’insérer INSerT des
informations sur une ligne. Par exemple, si vous avez décelé une faute de
frappe au début d’une ligne-par exemple vous avez oublié la partie d’un
mot - vous pouvez utiliser la touche CRSR pour revenir sur la faute et
ensuite appuyer s u r ® 0 ^ ^ pour insérer un espace. Après quoi, il suffit
de frapper la lettre qui manque.

CLR/HOME

La touche positionne le curseur sur la position «HOME»
départ) de l’écran qui est le coin supérieur gauche. La touche
décalée efface l’écran et place le curseur sur la position de départ.

La touche fonctionne comme son nom l’implique. Elle rétablit
l’état normal dans l’ordinateur, celui qu’il avait avant que vous l’ayez
modifié par un programme ou certaines commandes. Des informations
complémentaires vous seront fournies à ce sujet dans les chapitres
ultérieures.

15

TOUCHES DE FONCTION

Les quatre touches de fonction situées sur le côté droit du clavier
peuvent être programmés pour traiter une variété de fonctions. Elles
peuvent être définies de nombreuses façons accomplir des tâches répé­
titives.

La touche qui est l’abréviation de ConTRoL vous permet de régler
les couleurs et d’effectuer d’autres fonctions spécialisées. Maintenir la
touche enfoncée tout en appuyant sur un certain nombre d’autres
touches pour obtenir une fonction de commande. Vous avez eu la possi­
bilité d’essayer la touche lorsque vous avez modifié les couleurs du
texte pour créer des barres de couleurs différentes pendant la procédure
d’installation.

RUN/STOP

Normalement, en appuyant sur la touche on arrête l’exécu­
tion d’un programme BASIC. Elle signale à l’ordinateur d’arrêter de faire
quelque chose.

L’utilisation de la touche dans le mode décalé vous permet
de charger automatiquement un programme à partir d’une bande.

16

g TOUCHE COMMODORE

La touche COMMODORE B effectue un certain nombre de fonctions.
En premier lieu, elle vous permet de passer du mode texte au mode
graphique et vice versa. Lorsque l’ordinateur est mis en marche pour la
première fois, il se trouve dans le mode graphique/case supérieure,
c’est-à-dire que tout ce que vous tapez se trouve dans les lettres de la
case supérieure. Comme mentionné l’utilisation de la touche Œ Q dans
ce mode fait apparaître le graphique sur le côté droit des touches.

Si vous maintenez enfoncées le touche B ainsi que la touche
l’affichage passe sur le mode case supérieure et inférieure. A présent, si
vous maintenez la touche B enfoncée et une autre touche quelconque
portant un symbole graphique, le graphique du côté gauche de latouche
est représenté.

Pour revenir dans le mode case supérieure/graphique, maintenir la
touche Q enfoncée et appuyer à nouveau sur la to u c h e ^ H -

La seconde fonction de la touche B est de vous permettre d’accéder à
un second jeu de 8 couleurs de texte. En maintenant la touche B en­
foncée et l’une des touches numériques, n’importe quel texte frappé
apparaîtra dans l’autre couleur disponible sur la touche que vous avez
pressée. Le chapitre 5 fournit une liste des couleurs de texte disponibles
pour chaque touche.

RETOUR A LA NORMALE
A présent que vous avez obtenu une vue d’ensemble sur clavier, nous

allons explorer certaines des nombreuses performances du COMMO­
DORE 64.

Si vous avez toujours les barres de couleurs sur l’écran depuis le
réglage de votre appareil de télévision, maintenez les touches ^ ^ 9 et

enfoncées. L’écran doit s’effacer et le curseur doitse positionner
sur le point «de départ» (coin supérieur gauche de l’écran).

A présent maintenez simultanément enfoncées les touches B et Q .
Ceci amène la couleur du texte sur le bleu clair. Un pas supplémentaire
est nécesaire pour que tout revienne à la normale. Maintenez enfoncées
les t o u c h e s e t 0 (zéro et non la lettre «O»!). Ceci ramène le mode
d’affichage sur la normale. Rappelez-vous, nous avons inversé le terme
REVERSE avec | £ ^ | Q pour créer les barres de couleurs (les barres de
couleurs étaient effectivement des espaces d’une représentation inver­
sée. Si nous étions dans le mode de texte normal pendant le test des
couleurs, le curseur se serait déplacé mais en laissant des espaces
blancs.

17

CONSEIL:
Maintenant que vous l’avez fait de façon compliquée, voilà la façon simple de ré­

initia liser la machine sur l’affichage normal. Appuyer simultanément sur

U lim iJ et

Ceci efface l ’écran et ramène tout à la normale. Si un programme se trouve dans
l’ordinateur, il ne sera pas touché. C’est une séquence à retenir, en particulier si vous
programmez beaucoup.

Si vous souhaitez réinitialiser la machine comme si elle avait été coupée et ensuite
remise sous tension, frappez: SYS 64738 et appuyez sur la t o u c h e S o y e z
prudent si vous utilisez cette commande! Elle efface tous les programmes ou informa­
tions qui résident dans l’ordinateur.

CHARGEMENT ET SAUVEGARDE DE PROGRAMMES
Une des caractéristiques les plus importantes du COMMODORE 64 est

d’enregistrer sur cassette ou disquette, des programmes que vous
pouvez a nouveau changer par la suite.

Cette possibilité vous permet de conserver les programmes que vous
rédigez pour vous en servir plus tard ou d ’acheter des programmes pré­
rédigés pour les utiliser avec le COMMODORE 64.

Veiller l’unité d’entraînement de disque, ainsi que l’unité DATASSETTE
soient correctement fixées.

Chargement de programmes préconditionnés

Pour ceux qui s’intéressent à l’utilisation de programmes prépro­
grammés disponibles sur cartouches, cassettes ou disques. Voici tout ce
que vous avez à faire:

1. MODULES ENFICHABLES: L’ordinateur COMMODORE 64 possède
une gamme de programmes et de jeux sur cassettes. Les programmes
offrent une grande variété d’applications commerciales et person­
nelles et les jeux sont semblables à des jeux commerciaux réels- pas
des imitations. Pour charger ces jeux, mettre en premier lieu votre
appareil TV en marche. Ensuite COUPER l’alimentation de votre
COMMODORE 64. VOUS DEVEZ COUPER L’ALIMENTATION DE
VOTRE COMMODORE 64 AVANT D’INTRODUIRE OU D’ENLEVER
LES CARTOUCHES SINON VOUS DETRUISEZ LA CARTOUCHE! En
troisième lieu, introduire la cartouche. Maintenant mettez votre
COMMODORE 64 sous tension. Finalement, appuyez sur la touche
START appropriée, tel que mentionné sur la feuille d’instruction qui
est jointe à chaque jeu.

18

2. Cassettes: Utiliser votre enregistreur DATASSETTE et les cassettes
audio ordinaires qui font partie de votre programme préconditionné.
Veiller à ce que la bande soit complètement rebobinée jusqu’au début
de la première face. Ensuite, il suffit de frapper LOAD. L’ordinateur
répond par PRESS PLAY ON TAPE si bien que vous répondez en
appuyant sur «play on» de votre unité DATASSETTE. A ce point,
l’écran de l’ordinateur s’efface jusqu’à ce que le programme soit
trouvé. L’ordinateur indique FOUND (NOM DU PROGRAMME) sur
l’écran. Appuyez alors sur la toucheQ . Ceci charge effectivement le
programme dans l’ordinateur. Appuyer simplement sur la touche
G32Œ 3si vous souhaitez interrompre le chargement.

3. DISQUETTES: En utilisant votre entraîneur de disquettes, introduire
soigneusement la disquette préprogrammé de telle manière que
l’étiquette de la disquette soit tournée vers le haut et dans votre di­
rection. Rechercher une petite encoche sur la disquette (elle peut être
recouverte par un bout de ruban). Si vous chargez la disquette
correctement, l’encoche sera sur le côté gauche. Une fois la dis­
quette en place, fermez le couvercle en appuyant sur le levier. A
présent, frapper LOAD «NOM DU PROGRAMME», 8 et appuyez sur la
touche^JB ^B . La disquette fait un bruit et votre écran indique:

SERRCHING FOR PROGRRM NRME
LORDING

RERDV
I

Lorsque READY apparaît et que le est allumé, il suffit
d’appuyer sur RUN et votre software préprogrammé est prêt à être utilisé.

Chargement de programmes à partir de la bande

Le rechargement d’un programme à partir d’une bande ou d’un disque
est tout aussi simple. Pour la bande, rebobiner la bande jusqu’ au début
et frapper:

LORD "PROGRRM NRME"

Si vous ne vous rappelez pas le nom du programme, il suffit de frapper
LOAD et le premier programme sur la bande est mémorisé.

19

oir appuyé sur la touche RETURN , l’ordinateur répond par:

À PRESS PLftV OH TOPE

Après avoir appuyé sur la touche «play» (restitution), l’écran s’efface
en rétablissant lacouleurdefond de l’écran lorsque l’ordinateur cherche
le programme. Lorsque le programme est trouvé, l’écran indique:

FOUND PROGRAM NOME

Pour charger effectivement le programme, presser la to u c h e Q . Pour
interrompre la procédure de chargement, presser la touche RUN/STOP.
Si vous frappez la touche COMMODORE, l’écran rétablit la couleur du
cadre pendant que le programme est chargé. Après l’achèvement de la
procédure de chargement, l’écran revient à l’état normal et READY
réapparaît rapidement.

Chargement de programmes à partir du disque

Le chargement d’un programme à partir du disque suit la même procé­
dure. Frapper:

LORD "PROGRAM NñME",8

Après avoir appuyé sur la touche
tourner à toute vitesse et l’affichage indique:

le disque commence à

SEARCHING FOR PROGRAM NAME
LOADING

READY
■

Remarque:
Lorsque vous chargez un nouveau programme dans la mémoire de

l’ordinateur, toutes les instructions qui se trouvaient auparavant dans
l’ordinateur sont effacées. Veillez à sauvegarder le programme avec

20

lequel vous avez travaillé jusqu’à présent avant d’en charger un autre.
Une fois un programme chargé, vous pouvez le faire passer, lister ou
réaliser des modifications et sauvegarder la nouvelle version.

Sauvegarde de programmes sur une bande

Après avoir entré un programme, si vous souhaitez le sauvegarder sur
une bande, frappez:

SH'v'E "PRÜÜRRM nrme

«LE NOM DU PROGRAMME» peut être une combinaison jusqu’à 16
caractères. Après avoir appuyé sur la to u c h e (E ^ H ^ l’ordinateur ré­
pond par:

PRESS PLRV RND RECORD ON TRPE

Enfoncer en même temps les deux touches «RECORD et PLAY» sur
l’unité DATASSETTE. L’écran s’efface en prenant la couleur du cadre.

Après l’enregistrement du programme sur la bande, READY réapparaît
rapidement, indiquant que vous pouvez commencer à travailler sur un
autre programme ou arrêter l’ordinateur pour un certain temps.

Sauvegarde de programmes sur un disque

La sauvegarde d ’un programme sur un disque est même plus simple,
Frapper:

SRVE " PRÜGRRM NRME"...S

Le 8 est le code du disque, si bien qu’il vous suffit de faire savoir à
l’ordinateur que vous souhaitez que le programme soit sauvegardé sur
disque.

Après avoir appuyé sur la t o u c h e l e disque commence à
tourner et l’ordinateur répond par:

21

SftVING " PROGRAM NAME"
OK
READY

LA COMMANDE PRINT ET CALCULS
Après avoir effectué un certain nombre des opérations les plus diffici­

les, dont vous avez besoin pour conserver les programmes que vous
souhaitez, commençons à réaliser certains programmes que vous
pouvez sauvegarder.

Essayez de frapper ce qui suit exactement comme indiqué:

Si vous faites une faute de frappe, utilisez la touche pour
effacer le caractère immédiatement à gauche du curseur. Vous pouvez
supprimer autant de caractères que nécessaire.

Voyons ce qui s’est passé avec l’exemple ci-dessus. En premier lieu,
vous avez donné l’instruction à l’ordinateur d’afficher (PRINT) ce qui se
trouvait à l’intérieur des guillemets. En appuyant sur la to u c h e l^ Œ H ,
vous indiquez à l’ordinateur de faire selon vos instructions et COMMO­
DORE 64 est affiché sur l’écran.

Lorsque vous utilisez l’instruction PRINT sous cette forme, tout ce qui
est entre les guillemets est affiché exactement comme vous l’avez frappé.
Si l’ordinateur répond par:

7SYNTAX ERROR

demandez-vous si vous avez commis une faute de frappe ou oublié les
guillemets.

L’ordinateur est précis et suppose que les instructions lui soient
données dans une forme déterminée. Mais ne vous inquiétez pas; il vous
suffit de frapper les instructions telles que nous vous les présentons dans

22

les exemples et le COMMODORE 64 vous donnera entière satisfaction.
Rappelez-vous que vous ne pouvez détruire l’ordinateur en frappant

les touches et que la meilleure façon d’apprendre le BASIC est de et de
voir ce qui se passe.

PRINT est l’une des instructions les plus utiles et les plus performantes
du langage BASIC. Avec elle, vous pouvez représenter presque tout ce
que vous souhaitez, y compris des graphiques et des résultats de calculs.

Par exemple, essayez ce qui suit. Effacez l’écran en maintenant la
touche E m u et la t o u c h e e n f o n c é e s et frappez ce qui suit (veillez
à utiliser la touche 1 pour un et non la lettre «1 »):

Ce que vous avez découvert est que le COMMODORE 64 est un calcula­
teur dans sa forme de base. Le résultat «24» a été calculé et affiché auto­
matiquement. En fait, vous pouvez également réaliser des soustractions,
multiplications, divisions, élévations à une puissance et des fonctions
mathématiques avancées, telles que le calcul de racines carrées, etc.
Vous n’êtes pas limité à un simple calcul sur une ligne, mais vous en
saurez plus ultérieurement.

Remarquez que, dans la forme ci-dessus, PRINT se comporte diffé-
remmentdu premier exemple. Dans ce cas, unevaleurou le résultat d ’un
calcul est affiché et non le message exact que vous avez entré étant
donné que les guillemets ont été omis.

Addition:

Le signe plus (+) signale une addition: Nous ordonnons à l’ordinateur
d’afficher le résultat de 12 ajouté à 12. D’autres opérations arithmétiques
présentent une forme similaire à celle de l’addition. Il faut toujours se
rappeler de frapperŒ BŒ B après avoir frappé PRINT et le calcul.

23

Soustraction

Pour soustraire, utiliser l’essayer le signe conventionnel moins (-) :
Frappez

Multiplication

Si vous souhaitez multiplier 12 par 12, utilisez l’astérisque (*) pour
représenter la multiplication. Vous devez frapper:

Division

La division utilise la (/) familière. Par exemple, pour diviser 144 par 12,
frappez:

Elévation à une puissance

De façon analogue, vous pouvez aisément élever un nombre à une
puissance (c’est-à-dire multiplier un nombre par lui-même un nombre
déterminé de fois). La « j» (flèche dirigée vers le haut) signifie élévation à
la puissance.

24

Ce qui revient à frapper:

CONSEIL:
Le langage BASIC dispose d ’un certain nombre de possibilités raccourcies pour

réaliser les opérations. Une telle possibilité consiste à abréger des commandes BASIC
(ou mots-clés). Par exemple, un ? peut être utilisé à la place de PRINT. Au fur et à
mesure que nous avancerons, nous vous présenterons de nombreuses commandes;
l ’annexe D fournit les abréviations de chacune d ’elle et ce qui est affiché sur l’écran
lorsque vous tapez la forme abrégée.

Le dernier exemple illustre un autre détail important: Plusieurs calculs
peuvent être réalisés sur la même ligne et ils peuvent être de types mixtes.

Vous pouvez calculer ce problème:

Jusqu’è ce point, nous n’avons utilisé que de petits nombres et des
exemples simples. Cependant, le COMMODORE 64 est en mesure
d’effectuer des calculs plus complexes. Vous pouvez, par exemple,
additionner plusieurs nombres importants. Essayez cet exemple, mais ne
faites pas appel aux virgules, sinon vous allez commettre une erreur:

? 1 23 .4 5 + 3 4 5 .7 8 + 7 3 9 5 .6 8 7
8 3 6 4 .9 1 7

25

Cela paraît fantastique, mais maintenant essayez ceci:

? 12123123.45 + 345.78 + 7895.687
12131364.9

Si vous prenez le temps de réaliser l’addition à la main, vous obtenez
un autre résultat.

Qu’est-ce qui se passe ? Bien que l’ordinateur ait une grande puis­
sance, il existe une limite aux nombres qu’il peut traiter. Le COMMO­
DORE 64 peut traiter des nombres comportant 10 chiffres. Cependant,
lorsqu’un nombre est représenté, seuls 9 chiffres sont affichés.

Ainsi dans notre exemple, le résultat a été «arrondi» pour ne pas dé­
passer 9 chiffres. Le COMMODORE 64 arrondit à la valeur supérieure
lorsque le chiffre suivant est 5 ou plus, il arrondit à la valeur inférieure
lorsque le chiffre suivant est 4 ou moins.
Les nombres compris entre 0,01 et 99,999,999 sont affichés en utilisant la
notation standard. Les nombres à l’extérieur de ces limites sont affichés
en utilisant la notation scientifique.

La notation scientifique est seulement un moyen d’exprimer un nom­
bre très petit ou très grand sous forme d’une puissance de 10.
Si vous frappez:

? 1 23000000000000000
1-23E+17

Ce qui revient à 1.23*1017 et qui est utilisé pour conserver l’ordre des
choses. Il existe des limites aux nombres que l’ordinateur peut traiter,
même en notation scientifique. Ces limites sont les suivantes:

Plus grand nombre: 1.70141183E+38
Plus petit nombre: 2.93873588E-39

26

PRIORITES
Si vous essayez de réaliser certains calculs mixtes différents des

exemples auparavant présentés, vous pouvez ne pas obtenir les résultats
que vous escomptez. La raison en est que l’ordinateur réalise les calculs
dans un certain ordre.

Dans ce calcul:
20 + 8/2

vous ne pouvez dire si la réponse doit être 24 ou 14 jusqu’à ce que vous
sachiez l’ordre suivant lequel réaliser les calculs. Si vous ajoutez 20 à 8
divisé par 2 (ou 4), le résultat est 24. Mais, si vous ajoutez 20 à 8 et ensuite
divisé par 2, la réponse est 14. Essayez cet exemple et vérifiez le résultat
que vous obtenez.
La raison pour laquelle vous avez obtenu 24 est due au fait que le
COMMODORE 64 réalise les calculs de gauche à droite conformément à
l’ordre suivant:

Premièrement: - Signe moins indiquant les nombres négatifs
Deuxièmement: | Puissance de gauche à droite
Troisièmement: */ Multiplications et divisions de gauche à droite
Quartrièmement: + - Additions et soustractions de gauche à droite

En suivant les opérations selon l’ordre de priorité, vous constaterez
que dans l’exemple ci-dessus la division a été réalisée en premier lieu et
ensuite l’addition pour obtenir le résultat de 24.

Préparez certains problèmes vous-même et observez si vous pouvez
suivre la procédure et prévoir les résultats conformément aux règles
établies ci-dessus.

Il existe également une façon aisée de modifier la procédure de priorité
en utilisant des parenthèses pour sortir les opérations que vous sou­
haitez réaliser en premier. Par exemple, si vous souhaitez diviser 35 par
5 + 2, vous frappez:

Vous obtiendrez 35 divisé par 5 avec 2 ajouté à la réponse, ce qui n’est
pas du tout ce que vous entendiez. Pour obtenir ce que vous souhaitez
réellement, essayez ceci:

27

A présent, l’ordinateur évalue en premier lieu ce qui est contenu dans
la parenthèse. S’il existe des parenthèses à l’intérieur des parenthèses,
les plus à l’intérieur sont évaluées en premier lieu.

Lorsqu’il existe plusieurs parenthèses sur une ligne, comme par
exemple:

•■6 + 1 >

l’ordinateur procède aux évaluations de gauche à droite. Ici 21 devrait
être multiplié par 7 et donner comme résultat 147.

COMBINAISONS
Même si nous avons consacré pas mal de temps à des domaines qui

peuvent ne pas sembler très importants, les détails présentés ici pren­
dront toute leur importance lorsque vous commencerez à programmer et
s’avéreront d’une valeur inestimable. Pour vous donner une idée des
rapports, considérez ce qui suit: Comment faut-il combiner les deux
types d’instructions d’affichage que nous avons examinés, de manière à
afficher sur l’écran quelque chose de plus significatif?

Nous savons qu’en mettant quelque chose entre guillemets, les in­
formations apparaissent sur l’écran exactement telles qu’elles ont été
entrées et qu’un utilisant des opérateurs mathématiques, des calculs
peuvent être effectués. Alors pourquoi ne pas combiner les deux types
d’instructions PRINT comme ceci:

Même si ceci peut sembler un peu superflu, nous avons simplement
utilisé les deux types d’instructions d’affichage ensemble. La première
partie affiche «5*9= » exactement telle qu’elle a été frappée. La seconde
partie effectue le travail proprement dit et affiche le résultat avec le point-
virgule séparant la partie message de l’instruction du calcul effectif.

28

Vous devez toujours séparer les parties d’une instruction d’affichage
mixte par une certaine ponctuation pour qu’elle fonctionne correcte­
ment. Essayez une virgule à la place du point-virgule et observez ce qui
se passe.

Curieusement, le point-virgule amène la partie du texte de l’instruction
à être éditée immédiatement après la partie précédente sans espace. La
virgule a un effet quelque peu différent. Même s’il s’agit d’un séparateur
acceptable, elle espace les choses un peu plus. Si vous frappez:

? 2 ,3 ,4 ,5 ,6 - --
2 3 4 5
6

les nombres seront affichés sur la largeur de l’écran et en-dessous sur la
ligne suivante.

L’image du COMMODORE 64 est divisée en 4 zones de 10 colonnes
chacune. La virgule tabule chaque résultat dans la zone suivante
disponible. Vu que nous avons demandé que plus d’informations
s’affichent sur une ligne (nous avons essayé de placer 5 zones de
10 colonnes sur une ligne), la dernière position s’est reportée à la ligne
suivante.

La différence fondamentale entre la virgule et le point-virgule dans le
formatage des instructions PRINT peut être un avantage lors de la
création d ’images plus complexes: Elle nous permet de créer très facile­
ment des résultats plus sophistiqués.

29

CHAPITRE

INITIATION A LA
PROGRAMMATION

BASIC
• GOTO
• Conseils d’édition
• IF . . . THEN
• Boucles FOR . . . NEXT

LA PROCHAINE ETAPE
Jusqu’à présent, nous avons réalisé certaines opérations simples en

entrant une seule ligne d’instruction dans l’ordinateur. Après avoir
appuyé sur la to u ch e ^Œ Iffl, l’opération déterminée fut immédiatement
accomplie. Ceci est intitulé le mode IMMEDIAT ou CALCULATEUR.

Mais, pour être plus efficace, nous devons être en mesure d’utiliser
l’ordinateur avec plus d’une ligne d’instruction. Un certain nombre
d ’instructions combinées entre elles est intitulé un PROGRAMME et
vous permet d ’exploiter la pleine puissance du COMMODORE 64.
Pour voir avec quelle facilité vous rédigez votre premier programme sur
le COMMODORE 64, essayez ceci:

Effacez l’écran en maintenant la touche SHIFT enfoncée, ensuite
appuyez sur la touche

Frappez NEW et appuyez sur la touche^SEBS- (Ceci efface tous les
chiffres qui pourraient avoir été laissés dans l’ordinateur à la suite de vos
essais).

Maintenant frappez exactement ce qui suit: (n’oubliez pas d’appuyer
sur la touche après chaque ligne).

10 ? " COMMODORE 64
2 0 GOTO 10
■

A présent, frappez RUN et appuyez sur la t o u c h e o b s e r v e z ce
qui se passe. Votre écran s’anime avec COMMODORE 64. Après que vous
avez fini de regarder l’image, appuyez sur RUN/STOP pour arrêter le
programme. Un nombre important de concepts a été introduit dans ce
bref programme, qui constitue la base de toute programmation.

Notez que nous avons fait précéder chaque instruction d’un numéro.
Il s’agit du numéro de la ligne qui indique à l’ordinateur dans quel ordre
traiter chaque instruction. Ces numéros représentent également une
référence dans le cas où le programme a besoin de revenir sur une ligne
particulière. Les numéros de ligne peuvent être un nombre entier
(integer) quelconque dont la valeur est comprise entre 0 et 63,999.

10 PRINT “COMMODORE 64”
T î — Instruction

---------------Numéro de ligne

32

COMMODORE £4
COMMODORE 64
COMMODORE 64
COMMODORE 64
COMMODORE 6 4
COMMODORE 64
COMMODORE 64
COMMODORE 64
COMMODORE 64
COMMODORE 64
COMMODORE 64
COMMODORE 64
BRERK IN 10
REflDV

Une bonne procédure de programmation consiste à numéroter les
lignes par pas de 1 0 -au cas où vous auriez besoin d’introduire certaines
instructions par après. En dehors de PRINT, notre programme utilise
également une autre commande BASIC, GOTO. Celle-ci ordonne à
l’ordinateur de passer directement à une ligne particulière et de la traiter,
pour ensuite poursuivre à partir de ce point.

— >10 PRINT “COMMODORE 64”

----20 GOTO 10

Dans notre exemple, le programme affiche le message sur le ligne 10,
passe à la ligne suivante (20), qui lui donne pour instruction de repasser
à ligne 10 et d’afficher le message encore une fois. Ensuite, le cycle se
répète. Vu que nous n’avons pas indiqué à l’ordinateur une voie pour
sortir de cette boucle, le programme continue infiniment jusqu’à ce que
nous l’arrêtions physiquement avec la toucheQ ^E^J.

Après que vous avez arrêté le programme, frappez: LIST. Notre pro­
gramme sera affiché, intact, parce qu’il est toujours présent dans la
mémoire de l’ordinateur. Notez également que l’ordinateur convertit ? en
PRINT pour vous. Le programme peut maintenant être modifié, sauve­
gardé ou repassé.

Une autre différence importante entre frapper quelque chose dans le
mode immédiat et écrire un programme concerne le fait qu’une instruc­
tion immédiate exécutée et effacée de l’écran elle est perdue. Cependant,
vous pouvez toujours revenir sur un programme en frappant seulement
LIST.

33

D’autre part, lorsqu’il s’agit d’abréviations, n’oubliez pas que l’ordina­
teur peut sortir de la ligne si vous en utilisez de trop.

CONSEILS D’EDITION
Si vous faites une faute sur une ligne, vous disposez d’un certain

nombre d’options d’édition.

1. Vous pouvez frapper encore une fois une ligne à un moment voulu et
l’ordinateur substitue automatiquement la nouvelle ligne à l’ancienne.

2. Une ligne non souhaitée peut être effacée en frappant simplement le
numéro de ligne etBSEQI-

3. Vous pouvez également aisément éditer une ligne existante en utili­
sant les touches curseur et édition.

Supposons que vous ayez fait une faute de frappe dans une ligne de
l’exemple. Pour la corriger sans retaper la totalité de la ligne, essayez
cette procédure:

Frappez LIST, ensuite en utilisant les touches et 0 ^ 3 conjointe­
ment, déplacez le curseur vers le haut jusqu’à ce qu’il soit positionné sur
la ligne qui a besoin d’être modifiée.

A présent, utilisez latouche curseur droite pour déplacer le curseur sur
le caractère que vous souhaitez modifier, frappez la modification sur
l’ancien caractère. Puis appuyez sur la to u c h e ^ S ^ H et la lignecorrigée
remplace l’ancienne.

Si vous avez besoin de plus d’espace sur la ligne, positionnez le cur­
seur là où l’espace est nécessaire, appuyez simultanément sur les
touches BEQ et et un espace est ouvert. A présent, il suffit de
frapper l’information supplémentaire dans l’espace concerné et
d ’appuyer sur la touche^0 !B B - Par analogie, vous pouvez supprimer
des caractères non désirés en plaçant le curseur sur la droite du caractère
non désiré et en appuyant sur la to u c h e ^ ^ E D -

Pour vérifier si les modifications sont entrées, frappez à nouveau LIST
et le programme corrigé est affiché! D’ailleurs, il n’est pas nécessaire que
les lignes soient entrées par ordre numérique. L’ordinateur les place
automatiquement dans la séquence adéquate.

Essayez d’éditer notre programme-type en modifiant la ligne 10 et en
ajoutant un point-virgule à la fin de la ligne, comme indiqué page 35.
Ensuite, repassez le programme.

10 PRINT“COMMODORE” N’oubliez pas de déplacer le
curseur au-delà de la ligne 20
avant de passer le programme.

34

VARIABLES
Les variables sont certaines des facilités les plus utilisées de tout lan­

gage de programmation étant donné que les variables peuvent repré­
senter beaucoup plus d’informations dans l’ordinateur. La compréhen­
sion de la façon dont fonctionnent les variables rend le calcul plus aisé et
nous permet de réaliser des exploits qui sans elle ne seraient pas possi­
bles.

COMMODORE COMMODORE COMMODORE L OMMODORE
COMMODORE COMMODORE COMMODORE IIOMMODORE
COMMODORE COMMODORE COMMODORE c OMMODORE
COMMODORE COMMODORE COMMODORE L OMMODORE
COMMODORE COMMODORE COMMODORE |-OMMODORE
COMMODORE COMMODORE COMMODORE l" OMMODORE
COMMODORE COMMODORE COMMODORE L OMMODORE
COMMODORE COMMODORE COMMODORE OMMODORE
COMMODORE COMMODORE COMMODORE l~OMMODORE
COMMODORE COMMODORE COMMODORE L OMMODORE
COMMODORE COMMODORE COMMODORE L OMMODORE
COMMODORE COMMODORE COMMODORE L OMMODORE
COMMODORE COMMODORE COMMODORE l_OMMODORE
BR EAK IN 10
READ Y
■

Imaginez un nombre de cases à l’intérieur de l’ordinateur qui peuvent
chacune contenir un certain nombre ou une chaîne de caractères de
texte. Chacune de ces cases doit être étiquetée par un nom que nous
choisissons. Ce nom est appelé une variable et représente l’information
dans la case correspondante.

Par exemple, si nous disons:

10 X% = 15
20 X = 23,5
30 X$ = “LA SOMME DE X% + X = ”

L’ordinateur va représenter les variables comme suit:

X% 15
X 23,5
X$ LA SOMME DE X% + X =

Un nom de variable représente la case ou l’emplacement dans la
mémoireoù la valeur effective de la variable est mémorisée. Comme vous
pouvez le constater, nous pouvons assigner soit un nombre entier, soit

35

un nombre à virgule flottante, soit une chaîne de textes à une variable. Le
symbole % suivant un nom de variable indique que la variable représente
un nombre entier. Vous trouverez ci-dessous des noms de variables
entiers valides:

A%
X%
A1 %
NM%

Le «$» suivant le nom de la variable indique que la variable représente
une chaîne de textes. Vous trouverez ci-dessous des exemples de vari­
ables de chaîne.

A$
X$
Ml$

Les variables à virgule flottante suivent le même format, avec l’indica­
teur de type:

A1
X
Y
Ml

En assignant un nom à une variable il faut tenir compte d’un certain
nombre de conditions: En premier lieu, un nom de variable peut avoir un
ou deux caractères. Le premier caractère doit être un caractère alphabé­
tique de A à Z; le second caractère peut être soit alphabétique, soit
numérique (dans la gamme 0 à 9). Un troisième caractère peut être in­
corporé pour indiquer le type de variable (nombre entier ou chaîne de
caractères), 4 ou $.

Vous pouvez utiliser des noms de variables possédant plus de 2 carac­
tères alphabétiques, mais seuls les deux premiers sont identifiés par
l’ordinateur. Ainsi PA et PARTNO sont identiques et se réfèrent à la même
case de variable.

La dernière règle des noms de variables est simple: Ils ne peuvent
contenir aucun mot-clé BASIC (mots réservés), tel que GOTO, RUN, etc.
Reportez-vous à l’annexe D où vous trouverez une liste complète des mots
BASIC réservés. Pour voir la façon dont les variables peuvent être mises
en œuvre, frappez le programme complet qui a été introduit précé­
demment et faites le passer. N’oubliez-pas d’appuyer sur la touche

après chaque ligne du programme.

36

READY.

10 XX » 13
20 X * 23.5
30 X* = "Lfi SOMME DE XX + X = "
40 PRINT "XX = XX, "X = X
50 PRINT X»j XX + X

RERDY.

Si vous avez fait tout ce qui est indiqué, vous devez obtenir le résultat
suivant affiché sur l’écran.

RUN
X K = 1 5 X = 2 3 . 5
Lfl SOMME DE X K + X = 3 8 . 5
REflDV

Nous avons combiné toutes les astuces apprises concernant le for­
matage de l’image comme vous pouvez le constater et affiché la somme
des deux variables.

Aux lignes 10 et 20, nous avons assigné une valeur entière à X% et
assigné une valeur à virgule flottante à X. Ceci place le nombre associé
avec la variable dans sa case. A la ligne 30, nous avons assigné une
chaîne de textes à X$. La ligne 40 combine les deux types d’instruction
PRINT pour afficher un message et la valeur effective de X% et X.
La ligne 50 affiche la chaîne de textes assignée à X$ et la somme de X% et
X.

Notez que même si X est utilisé comme une part de chaque nom de
variable, les identificateurs % et $ rendent X%, X et X$ uniques, repré­
sentant ainsi 3 variables distinctes. Mais les variables sont encore beau­
coup plus intéressantes.

Si vous changez leur valeur, la nouvelle valeur remplace la valeur
originale dans la même case. Ceci vous permet d’écrire une instruction
comme suit:

X = X + 1

Ce ne serait jamais accepté dans l’algèbre normale, mais il s’agit d’un
des concepts les plus utilisés dans la programmation. Il signifie: prendre
la valeur courante de X, ajouter un et placer la nouvelle somme dans la
case représentant X.

37

IF . . . THEN
Capables de modifier aisément la valeur des variables, nous pouvons à

présent essayer un programme comme suit:

NEN
10 CT = Ü
2 0 ■•"COMMODORE 6 4 "
30 CT = CT + 1
4 0 I F CT < 5 THEN 2 0
5 0 END
RIJN
COMMODORE 64
COMMODORE 64
COMMODORE 6 4
COMMODORE 6 4
COMMODORE 6 4

Ce que nous avons fait est d’introduire deux commandes BASIC et
d’assurer un certain contrôle sur notre petit programme d’édition intro­
duit au début de ce chapitre. IF . . . THEN ajoute une certaine logique au
programme. Il signifie IF (si) une condition est confirmée THEN (alors)
effectuez quelque chose. IF (si) la condition n’est plus confirmée, THEN
(alors) passez à la ligne suivante du programme.

Un certain nombre de conditions peut être défini en utilisant l’instruc­
tion IF. . .THEN.

SYMBOLE
<
>

< >
> =
< =

SIGNIFICATION
Inférieur à
Supérieur à
Egal à
Différent de
Supérieur ou égal à
Inférieur ou égal à

L’utilisation de l’une de ces conditions est facile tout en offrant des
possibilités étonnantes.

10 CT = 0
----> 20 ?“COMMODORE 64”

30 CT = CT + 1
^ —40 IF CT < 5 THEN 20

i
50 END

38

Dans l’exemple du programme, nous avons introduit une «boucle» qui
imposait un certain nombre de restrictions en affirmant: IF (si) une valeur
est inférieure à un certain nombre, THEN (alors) effectuez quelque chose.

La ligne 10 définit CT (CounT = comptage) égal à 0. La ligne 20 affiche
notre message. La ligne 30 ajoute un à la variable CT. Cette ligne compte
combien de fois nous avons exécuté la boucle. Chaque fois que la boucle
est exécutée, CT augmente d’une unité.

La ligne 40 est notre ligne de contrôle. Si CT est inférieur à 5, signifiant
que nous avons exécuté la boucle moins de 5 fois, le programme revient
à la ligne 20 et procède à une réédition. Lorsque CT devient égal à 5
- indiquant que 5 COMMODORE 64 ont été affichés - le programme
passe à la ligne 50 qui signale la fin du programme.

Essayez le programme pour voir de quoi il s’agit. En modifiant la limite
CT de la ligne 40, vous pouvez faire afficher un nombre quelconque de
lignes. IF ... THEN a une multitude d’autres utilisations que nous exami­
nerons dans de futurs exemples.

BOUCLES FOR . . . N EXT
Il y a une méthode plus simple et préférable pour réaliser ce que nous
avons fait dans l’exemple précédent, soit en utilisant une boucle FOR ...
NEXT. Considérons ce qui suit:

NEW

10 FOR CT = 1 TO 5
2 0 P R IN T "COMMODORE 64
30 NEXT CT

RIJN
COMMODORE 64
COMMODORE 64
COMMODORE 6 4
COMMODORE 6 4
COMMODORE 6 4

Comme vous pouvez le constater, le programme est beaucoup plus
restreint et plus direct.

CT commence par 1 la ligne 10. Ensuite, la Iigne20 provoque un certain
affichage. A la ligne 30, CT est avancé de 1. L’instruction NEXT de la ligne
30 renvoie automatiquement le programme à la ligne 10 où la partie FOR
de l’instruction FOR . . . NEXT est située. Ce processus se poursuit

39

jusqu’à ce que CT atteigne la limite que vous avez entrée. La variable
utilisée dans une boucle FOR . . . N EXT peut être avancée de valeurs
inférieures à 1 si nécessaire. Essayez cet exemple:

NEW

10 FOR NB = 1 TO 10 S T E P . 5
2 0 P R IN T NB r
30 NEXT NB

RUN
1 1 .5 2 2 . 5
Z; z' . 5 4 4 . 5
5 5 . 5 S 6 . 5
7 f m J ÿ S . 5
9 9 . 5 10

Si vous entrez et passez ce programme, vous constaterez des nombres
de 1 à 10, espacés de 0,5, affichés sur l’écran. Tout ce que nous avons fait
ici est d’afficher les valeurs que NB est supposé prendre lorsqu’il passe
dans une boucle. Vous pouvez même spécifier augmente ou diminue.
Substituons ce qui suit à la ligne 10:

10 FOR NB = 10 TO 1 STEP -.5

et observez que le contraire se passe quand NB passe de 10 à 1 par ordre
décroissant.

40

C H A PITR E

BASIC AVANCÉ
• Introduction
• Animation simple-

Boucles imbriquées
• IN PUT
• G ET
• Nombres aléatoires
• Jeu de devinettes
• Jeu de dés
• Graphiques aléatoires

Fonctions CHR$ et ASC

INTRODUCTION
Les quelques chapitres qui suivent ont été rédigés pour les personnes

qui se sont relativement familiarisées avec le langage de programmation
BASIC et les concepts nécessaires pour rédiger des programmes des
plus avancés.

Pour ceux d’entre vous qui commencent tout juste à apprendre à pro­
grammer , vous pouvez trouver certaines informations un peu trop tech­
niques pour les comprendre complètement. Mais soyez attentif, étant
donné que pour ces deux chapitres amusants GRAPHIQUES DE
SYLPHES et CREATIONS SONORES, nous avons élaboré certains
exemples simples qui sont rédigés pour les nouveaux utilisateurs. Les
exemples vous fourniront une bonne idée de la façon dont utiliser les
possibilités graphiques et sonores sophistiquées disponibles sur votre
COMMODORE 64.

Si vous avez décidé de vouloir savoir plus sur la rédaction des pro­
grammes en langage BASIC, nous avons prévu un lexique (annexe N) à la
fin de ce manuel. Si vous vous êtes déjà familiarisé avec la programma­
tion BASIC, ces chapitres vous faciliteront l’apprentissage des tech­
niques de programmation BASIC avancé. Vous trouverez des informa­
tions plus détaillées dans le manuel de référence du programmeur
COMMODORE 64, disponible auprès de votre revendeur local Commo­
dore.

42

ANIMATION SIMPLE
Essayons certaines des possibilités graphiques du COMMODORE 64

en prenant tout ce que nous avons vu jusqu’à présent et en y ajoutant
quelques nouveaux concepts. Si vous êtes ambitieux, frappez le pro­
gramme suivant et regardez ce qui se passe. Vous noterez que dans le
contexte des instructions d’affichage nous pouvons également donner
des ordres au curseuret à l’écran. Si vous trouvez quelque chose comme
(¡L2ï| LEFT dans une liste de programme, maintenez la touche
enfoncée et appuyez sur la touche LEFT/RIGHT. L’écran affiche la
représentation graphique d’un curseur gauche (deux barres verticales
inversées). De la même façon, l’action de QQD et affiche un
coeur inversé.

PRINT

10 REM BRLLE REBONDISSANTE
20 PR INT "T
23 FOR X « 1 TO 10
30 FOR BL « 1 TO 40
40 PRINT"iiH"; :REM (BALLE EST SHIFVQ)
50 FOR TM a^kJQ 3
60 NEXT TM
70 NEXT BL
73 REM RENVQYE/CA BALLE A GAUCHE
80 FOR BL *>40 TO 1 STEP -1
90 PR INT "Mlllll1
100 FOR TM * 1 TO
110 NEXT TM
120 NEXT BL
130 GOTO 20

Indique une
nouvelle commande)

S Ces espaces sont ^
(intentionnels J

CONSEIL:

Tous les mots de ce texte seront achevés sur une ligne. Cependant, tant
que vous n’avez pas pressé la to u c h e |3 ïH l> votre COMMODORE 64
passera automatiquement à la ligne suivante, même au milieu d ’un mot.
Le programme représentera une balle rebondissante, se déplaçant de
gauche à droite et vice versa à travers l’écran. Si nous regardons bien le
programme (reproduit page 44), vous pouvez constater la façon dont cet
exploit est réalisé.

La ligne 10 est une REMarque qui indique ce que fait le programme;
elle n’a pas d’effet sur le programme proprement dit.

La ligne 20 efface toutes les informations de l’écran. La ligne 25 affiche
10 instructions de descente du curseur. Ceci positionne la balle au centre

43

10 REM BfiLLE REBONDISSANTE
--- - 20 PR INT "T
— ►* 25 FOR X « 1 TO 10 • PRINT "S": NEXT

30 FOR BL = 1 TO 40
40 PRINT" •II";:REM (BALLE EST SHIFT/Q)
50 FOR TM « 1 TO 5

L 60 NEXT TM
--- 70 NEXT BL

75 REM RENVOYE LA BALLE A GAUCHE
i— ^ 80 FOR BL » 40 TO 1 STEP -1

90 PRINT " IIMI";
r*" 100 FOR TM * 1 TO 5
1— 110 NEXT TM

--- 120 NEXT BL
----- 130 GOTO 20

de l’écran. Si la ligne 25 avait été éliminée, la balle se serait déplacée sur
la ligne supérieure de l’écran.

La ligne 30 détermine une boucle de déplacement de la balle sur les 40
colonnes de gauche à droite.

La ligne 40 accomplit un énorme travail. En premier lieu, elle prévoit un
espace pour effacer les positions antérieures de la balle, ensuite elle
affiche la balle et finalement elle effectue un déplacement à gauche du
curseur pourtout préparer afin d’effacer à nouveau l’actuelle position de
la balle. La boucle établie lignes 50 et 60 ralentit légèrement la balle ou
retarde le programme. Sans elle, la balle se déplacerait trop rapidement
pour l’observer. La ligne 70 achève la boucle déterminée ligne 30 qui
affiche les balles sur l’écran. Chaque fois que la boucle est exécutée, la
balle se déplace d’un autre espace vers la droite. Comme vous le noterez
à partir de l’illustration, nous avons créé une boucle à l’intérieur d’une
boucle.

Ceci est parfaitement acceptable. La seule fois que vous aurez des pro­
blèmes ce sera quand le boucles se croisent. Il est utile dans la rédaction
de programmes, que vous contrôlez vous-même, comme illustré
ici, si la logique d’une boucle est correcte. Pour vérifier ce qui arrive si
vous croisez une boucle, inversez les instructions des lignes 60 et 70.
Vous obtiendrez une erreur, étant donné que l’ordinateur sera confus et
ne peut afficher ce qui se passe.

Le lignes 80 à 120 renversent uniquement les étapes de le première
partie du programme et déplacent la balle de droite à gauche. La ligne 90
est légèrement différente de la ligne 40, étant donné que la balle se
déplace dans la direction opposée (nous avons à effacer la balle vers la
droite et à la déplacer vers la gauche).

44

Et quand tout ceci est fait, le programme revient à la ligne 20 pour re­
commencer tout le processus. Joli, n’est-ce-pas!
Pour varier le programme, éditez la ligne 40 pour lire:

Pour obtenir le zéro, maintenez la touche
lettre «Q».

SHIFT enfoncée et frappez la

Passez le programme et observez ce qui se passe maintenant. Etant
donné que nous n’avons pas tenu compte de la commande du curseur,
chaque balle reste sur l’écran jusqu’à ce qu’elle soit effacée par la balle
se déplaçant de droite à gauche dans la seconde partie du programme.

INPUT
Jusqu’à présent, chaque chose à l’intérieur d’un programme a été

définie avant de passer. Une fois que le programme a démarré, rien ne
pouvait être modifié. INPUT nous permet d’introduire de nouvelles in­
formations dans un programme lorsqu’il est passé et fait que ces nou­
velles informations agissent sur celui-ci. Pour obtenir une idée sur la
façon dont INPUT fonctionne, frappez NEW et entrez ce court
programme:

Ce qui arrive lorsque vous passez ce programme est simple. Un point
d’interrogation apparaît indiquant que l’ordinateur attend que vous
frappiez quelque chose. Entrez n’importe quel caractère ou groupe de
caractères moyennant le clavier et pressez la touche L’ordi­
nateur répond alors par «YOU TYPED» (vous avez frappé) suivi par l’in­
formation que vous avez entrée.

Ceci peut sembler très élémentaire, mais imaginez ce que vous pouvez
faire faire à l’ordinateur avec n’importe quelle information que vous
entrez.

Vous pouvez entrer (INPUT) soit des variables numériques, soit des
chaînes de variables et même suggérer à l’utilisateur de faire quelque

45

chose en raison de l’instruction INPUT sous forme d’un message. Le
format d’INPUT est le suivant:

La suggestion doit être inférieure à 40 caractères. Ou seulement:

INPUT VARIABLE

REMARQUE: Pour sortir de ce programme, maintenez les touches
imKrianfl et JdttMaa enfoncées.

Le programme suivant est non seulement utile mais donne une
démonstration d’un grand nombre des points qui ont été présentés
jusqu’à présent, y compris la nouvelle instruction d’entrée (INPUT).

5 PR INT "T
10 PRINT"EDITIQN EN FRHRENHEIT OU CELSIUS <F/C)":INPUT A$
20 IF fl$»"(ÎLIHÊN10
30 IF R*-"C" THEN1
40 IF A$-"F" THEN50
43 00T0 10
50 INPUT "ENTREE DE CELSIUS5
60 F » <C#9V5+32
70 PRINTC;"DEGRES CELSIUS
30 PRINT
90 GOTO10
100 INPUT "ENTREE DE FAHRENHEIT5
110 C « <F-32)#5/9
120 PRINTFj"DEGRES FRHRENHEIT * ";Ci"DEGRES CELSIUS"
130 PRINT
140 GOTO10

"jF;"DEGRES FRHRENHEIT"

" ; f-

Si vous entrez et passez ce programme, vous pouvez voir l’instruction
INPUT en action.

La ligne 10 utilise l’instruction INPUT (entrée) non seulement pour se
procurer des informations, mais également pour afficher notre
suggestion. Notez aussi que nous pouvons demander soit un nombre,
soit une chaîne (en utilisant une variable numérique ou de chaîne).

Les lignes 20, 30 et 40 effectuent certains contrôles sur ce qui est
frappé. A la ligne 20, si rien n’est entré (seule la touche E f lE B est
enfoncée), le programme revient à la ligne 10 et redemande à nouveau
une entrée. A la ligne 30, si F est frappé, vous savez que l’utilisateur sou­
haite convertir une température de degrés Fahrenheit en degrés Celsius,
si bien que le programme se branche sur la partie qui réalise cette con­
version.

46

La ligne 40 réalise un contrôle supplémentaire. Nous savons qu’il n’y a
que deux choix valables afin l’utilisateur puisse entrer. Pour passer à la
ligne 40, l’utilisateur doit avoir frappé certains caractères autres que F.
A présent, un contrôle est effectué pour vérifier si ce caractère est un C;
dans le cas contraire, le programme demande à nouveau une entrée.

Ceci peut apparaître comme trop minutieux, mais il s’agit d ’une bonne
procédure de programmation.

Un utilisateur non familiarisé avec le programme peut être très frustré
si celui fait quelque chose d’étrange parce qu’une erreur a été commise
en entrant les informations. Après avoir déterminé quel type de conver­
sion réaliser, le programme fait le calcul et affiche la température entrée
et la température convertie. Le calcul est purement mathématique parce
qu’il se sert de la formule comme pour la conversion de la température.
Après la fin du calcul et l’affichage de la réponse, le programme revient à
zéro et redémarre.
Après le passage du programme, l’écran se présente comme suit:

CONVERT FROM FfiHRENHEIT OR CELSIUS <F/C>s ?F
ENTER DECREES FAHRENHEIT: 32
32 DEC- FAHRENHEIT = O DEC. CELSIUS

CONVERT FROM FAHRENHEIT UR CELSIUS <F, C> s ?

Après avoir passé le programme, veillez à le sauvegarder sur disque ou
bande. Ce programme, de même que d’autres présentés dans ce manuel,
peuvent constituer la base de votre bibliothèque de programmes.

47

GET
GET vous permet d’entrer un seul caractère à la fois à partir du clavier

sans appuyer sur la to u c h e ^ ^ ^ M - ^ ec' accélère effectivement l’entrée
des données dans de nombreuses applications. Quelle que soit la touche
enfoncée, elle est assignée à la variable que vous spécifiez par GET. La
routine suivante illustre la façon dont GET fonctionne:

NEW

1 PRINT " {CLR/HOME}
10 GET R$: IF RS =
20 PRINT RS;
30 GOTO 10

"l11 THEN 10

Si vous passez (RUN) le programme, l’écran est effacé et chaque fois
que vous appuyez sur une touche, la ligne 20 l’affiche sur l’écran et
ensuite vous passez (GET) à un autre caractère. Il est important de noter
que le caractère entré ne sera pas affiché à moins que vous ne l’affi­
chiez (PRINT) exprès sur l’écran, comme nous l’avons fait ici. La seconde
instruction sur la ligne 10 est également importante. GET agit conti­
nuellement, même si aucune touche n’est enfoncée (contrairement à
INPUT qui attend une réponse), si bien que la seconde partie de cette
ligne contrôlesans cesse le clavier jusqu’àcequ’unetouchesoitfrappée.
Voir ce qui se passe si la seconde partie de la ligne 10 est éliminée.

Pour arrêter ce programme, vous pouvez appuyer sur les touches
RUN/STOP m RESTORE

La première partie du programme de conversion de température peut
être facilement réécrite pour utiliser GET. Chargez (LOAD) le programme
de conversion de température et modifiez les lignes 10, 20 et 40 comme
indiqué ci-dessous:

10 PRINT"EDITI0N EN FAHRENHEIT OU CELSIUS CF/'O"
20 GETfll: IF THEN20
40 IF A*0"F" THEN20
45 =

Cette modification rend le fonctionnement du programme plus souple
étant donné que rien n’arrive avant que l’utilisateur ne frappe sur le
clavier l’une des réponses souhaitées pour sélectionner le type de
conversion.

Une fois que cette modification est réalisée, veillez à sauvegarder la
nouvelle version du programme.

48

NOMBRES ALEATOIRES
Le COMMODORE 64 contient un certain nombre de fonctions qui sont

utilisées pour réaliser des opérations spéciales. Les fonctions peuvent
être considérées comme des programmes intégrés inclus dans le BASIC.
Mais, plutôt que de frapper sur le clavier un certain nombre d ’instruction
chaque fois que vous avez besoin de réaliser un calcul spécialisé, il vous
suffit de frapper la commande de la fonction souhaitée et l’ordinateur fait
le reste.

De nombreuses fois, lors de la désignation d’un jeu ou d’un pro­
gramme éducatif, vous avez besoin de générer un nombre aléatoire pour
simuler par exemple un jet de dé. Vous pouvez certainement rédiger un
programme qui générerait ces nombres, mais une manière plus facile
consiste à appeler la fonction nombre aléatoire (RaNDom).

Pour voir ce que la fonction RND effectue effectivement, essayez ce
court programme:

10 FOR X = 1 TO 10
20 PRINT RND<1> r
30 NEXT

Après avoir passé le programme, vous constaterez l’affichage suivant.

Vos nombres ne correspondent-ils pas? Parfait. S’ils correspondaient,
nous serions tous troublés, étant donné qu’ils doivent être complètement
aléatoires!

Essayez de passer le programme encore quelques fois pour vérifier
que les résultats sonttoujours différents. Même si les nombres ne suivent
pas un schéma quel qu’il soit, vous devez commencer à noter que cer­
tains points restent identiques chaque fois que le programme est passé.
Toutd’abord, les résultats sont toujours compris entre 0 et 1, maisjamais
égauxàOou à 1. Cequi n’arrivera certainement jamaissi nous souhaitons
simuler le jet aléatoire d’un dé, vu que nous cherchons des nombres
compris entre 1 et 6.

L’autre caractéristique importante à retenir est que nous travaillons
avec des nombres réels (avec des décimales). Ceci peut également être
un problème, vu que des chiffres entiers sont fréquemment employés.

49

Il y a un grand nombre de moyens simples pour produire des nombres à
partir de la fonction RND dans la plage souhaitée.

Remplacez la ligne 20 par celle qui suit et passez à nouveau le pro­
gramme:

20 P R IN T 6*RNCK1> .,

RUN

. 60563664
5 . 47238*363
3 .1 3 2 6 5 0 5 4
3 - 1 6 3 3 1 0 3 5
3 .3 2 5 2 7 8 3 4

4 .5 3 6 6 0 8 5 3
3 .4 0 3 5 0 2 2 7
4 .3 3 5 4 7 6 6 8
5 . 5 Û 6 2 0 7 4 3
4 . 1 7 Û 3 0 2 3 3

Ceci a résolu le problème du manque de résultats supérieurs à 1, mais
nous sommes toujours confrontés à la partie décimale du résultat.
A présent, une autre fonction peut être appelée. La fonction INTeger
(entier) convertit les nombres réels en valeurs entières.

Une fois de plus, remplacez la ligne 20 par celle qui suit et passez le
programme pour voir l’effet de la modification.

Ceci a arrangé pas mal de choses tout en nous permettant de nous
rapprocher de notre objectif d’origine, à savoir de générer des nombres
aléatoires compris entre 1 et 6. Si vous examinez attentivement ce que
nous avons généré cette dernière fois, vous constaterez que les résultats
se situent seulement entre 0 et 6.

A la dernière étape, ajoutez un 1 à l’instruction comme suit:

2 0 P R IN T I NT ■ ' 6*RND < 1 } :■

RIJN

1 0
2 4 CT “j

0 1

A présent, nous avons obtenu les résultats souhaités. D’une façon géné­
rale, vous pouvez placer un nombre, une variable ou n’importe quelle
expression BASIC entre parenthèses d’une fonction INT. Suivant la plage

50

souhaitée, il vous suffit de multiplier la limite supérieure par la fonction
RND. Par exemple, pour générer des nombres aléatoires entre 1 et 25,
vous devez frapper:

20 PRINT INT(25*RND(1)+1

La formule générale de génération d’un jeu de nombres aléatoires dans
une certaine limite est:

NUMBER = INT((UPPER LIMIT-LOWER LIMIT)*RND(1)+LOWER LIMIT

JEU DE DEVINETTES
Vu que nous avons passé un certain temps pour comprendre les nom­

bres aléatoires, pourquoi ne pas utiliser ces informations? Le jeu suivant
n’illustre non seulement les nombres aléatoires, mais il assure une intro­
duction à certaines théories de programmation complémentaires.

En passant ce programme, un nombre aléatoire NM sera généré.

1 REM JEU DE DEVINETTES
2 PRINT "T
5 INPUT "IMPQRTRNCE MAXIMALE DU CHIFFRE ";LI
10 NM = INT(LI*RND(1)>+1
13 CN *0
20 PRINT "COMMENÇONS"
30 INPUT "VOTRE CHOIX"; GU
35 CN « CN + 1
40 IF GU > NM THEN PRINT "MON CHIFFRE EST PLUS PETIT":PRINT:GOTO 30
50 IF GU < NM THEN PRINT "MON CHIFFRE EST PLUS GRAND":PRINT:GOTO 30
60 IF GU = NM THEN PRINT "CA V EST, VOUS AVEZ DEVINE LE CHIFFRE"
63 PRINT "EN SEULEMENT "; CN ; "ESSAIS.PRINT
70 PRINT "UNE AUTRE CHANCE (0/N)?";
80 GET AN*: ip AN*«"" THEN 80
90 IF AN*« "0" THEN 2
100 IF AN* O"N" THEN 80

READV.

Vous pouvez spécifier l’importance maximale du nombre au démar­
rage du programme. Ensuite, c’est à vous de deviner ce nombre.

L’exemple d’un passage suit avec une explication.

51

EN TER U PPER L IM IT FOR G U E S S ? 2 5
I 'V E GOT THE NUMBER.

W H R T 'S VOIJR GUESS ? 15
MV NUMBER IS H IG H ER .

N H R T 'S VOIJR GUESS ? 2 0
MV NUMBER IS LOWER.

W HRTr S VOUR GUESS ? 1 9

G RERT ! VOU GOT MV NUMBER
IN ONLV 3 G UESSES .-

DO VOU MRNT TO TRV RNOTHER <V/N> ?

Les instructions IF/THEN comparent votre suggestion au nombre généré.
Suivant votre suggestion, le programme vous indiquesi votre suggestion
était supérieure ou inférieure au nombre aléatoire généré.

A partir de la formule donnée pour la détermination de la limite des
nombres aléatoires, vérifiez si vous pouvez ajouter quelques lignes au
programme qui permettent à l’utilisateur de spécifier également la limite
inférieure des nombres générés.

Chaque fois que vous faites une suggestion, CN est avancé de 1 pour
compter le nombre des suggestions. En utilisant le programme, essayez
de vous servir de votre bon sens pour devinier le chiffre en peu d ’essais.

Quand vous obtenez la bonne réponse, le programme affiche le
message «GREAT! YOU GOT MY NUMBER» (félicitations, vous avez
trouvé mon nombre) ensemble avec le nombre d’essais qui avaient été
nécessaires. Vous pouvez alors recommencer la procédure. Rappelez-
vous que le programme génère à chaque fois un nouveau nombre
aléatoire.

52

CONSEILS DE PROGRAMMATION:
Deux points sont utilisés dans les colonnes 40 et 50 pour séparer plusieurs in­

structions sur la même ligne. Ceci permet non seulement des économies de frappe,
mais conserve dans les longs programmes davantage d ’espace dans la mémoire.

Notez également que dans les instructions IF/THEN sur les deux lignes corres­
pondantes nous avons donné pour instruction à l’ordinateur d ’afficher (PRINT)
quelque chose, au lieu d ’aller immédiatement sur un certain autre point du programme.

Ce dernier point illustre la raison pour laquelle l’on utilise des numéros de ligne par
incrément de 10: Après que le programme a été rédigé, nous avons décidé d ’ajouter la
partie comptage. En ajoutant seulement ces nouvelles lignes à la fin du programme,
numérotées pour être intégrées dans les bonnes lignes existantes, le programme a été
aisément modifié.

JEU DE DÉS
Le programme suivant simule le jet de deux dés. Vous pouvez l’utiliser

tel qu’il est ou en tant que partie d’un jeu plus important.

5 PRINT "TENTEZ VOTRE CHANCE"
10 PRINT "DE ROUGE = ";INT<6#RNDC1))+1
20 PRINT "DE BLANC » ";INT<6#RND<1))+1
30 PRINT "PRESSEZ SPACE POUR D'AUTRES JETS":PRINT
40 GET A$: IF A$ = "" THEN 40
50 IF A$ = CHR$(32) THEN 10

Voulez-vous tenter votre chance?
Avec tout ce que vous avez appris sur les nombres aléatoires et le

langage BASIC, voyons si vous pouvez suivre ce qui se passe.

GRAPHIQUES ALEATOIRES
Comme note finale au sujet des nombres aléatoires et comme introduc­
tion à la conception de graphiques, prenez un moment pour introduire et
passer ce simple petit programme:

10 P R IN T " {C LR /H O M F .} "
2Ü P R IN T C H R * < 2 0 5 .5 + RNCK 1 > > ;
4 0 GOTO 2 0

Comme vous pouvez l’avoir supposé, la ligne 20 est ici la ligne clé. Une
autre fonction, CHR$ (chaîne de caractères) vous fournit un caractère
basé sur un numéro de code standard de 0 à 255. Chaque caractère que

53

le COMMODORE 64 peut afficher est codé de cette façon (voir annexe F).
Pour trouver rapidement le code d ’un caractère quelconque, il suffit de
frapper:

PRINT ASC (“X”)

où X est le caractère que vous contrôlez (celui-ci peut être tout caractère
affichable, y compris les graphiques). La réponse est le code du caractè­
re que vous avez frappé. Comme vous l’avez probablement remarqué
«ASC» est une autre fonction qui fournit le code normalisé «ASCII» pour
les caractères que vous avez frappés. Vous pouvez à présent afficher ce
caractère en frappant:

PRINT CHR$(Y)

Si vous essayez de frapper:

PRINT CHR$(205); CHR$(206)

vous obtenez les deux caractères graphiques du côté droit sur les
touches M et N. Il s’agit des deux caractères que le programme utilise
pour le labyrinthe.

En utilisant laformule 205.5 + RND(1), l’ordinateur prélève un nombre
aléatoire compris entre 205.5 et 206.5. Il y a 50% de chance que le nombre
soit supérieur ou inférieur à 206. CHR$ ignore toutes les valeurs fraction­
naires si bien que la moitié du temps, le caractère portant le code 205 est
affiché et le reste du temps le code 206 est affiché.

Si vous souhaitez procéder à des expériences avec ce programme,
essayez de changer 205.5 en ajoutant ou soustrayant un certain nombre
de dixièmes de celui-ci. Ceci donnera à l’un ou l’autre caractère une plus
grande probabilité d’être sélectionné.

54

CHAPITRE

COMMANDES
GRAPHIQUES ET

COULEURS AVANCEES
• Couleurs et graphiques
• Couleurs d’affichage (PRINT)
• Codes de couleurs CHR$
• PEEK et POKE
• Encore un jeu

COULEURS ET GRAPHIQUES
Jusqu’à présent, nous avons exploré certaines des possibilités de

calculs sophistiqués du COMMODORE 64. Mais l’une de ses caractéristi­
ques les plus fascinantes est son exceptionnelle capacité de produire
des couleurs et des graphiques.

Vous avez vu un court exemple de graphiques dans les programmes
«balle rebondissante» et «labyrinthe». Mais ceci n’a pu qu’effleurer les
performances dont vous disposez. Un certain nombre de nouveaux
concepts seront introduits dans cette section pour expliquer la pro­
grammation des graphiques et des couleurs e.t vous indiquer comment
vous pouvez créer vos propres jeux et animations avancés.

Etant donné que nous nous sommes concentrés sur les possibilités de
calcul de la machine, tous les affichages que nous avons générés étaient
jusqu’à présent dans une couleur unique (texte en bleu clair sur fond
bleu foncé et cadre bleu clair).

Dans ce chapitre, nous allons voir la façon dont on peut ajouter des
couleurs aux programmes et commander la totalité de ces symboles gra­
phiques étranges du clavier.

AFFICHAGE DE COULEURS
Comme vous l’avez découvert si vous avez essayé le réglage des cou­

leurs de chapitre 1, vous pouvez modifier les couleurs du texte en main­
tenant simplement la touche enfoncée et en appuyant sur l’une des
touches de couleurs. Ceci fonctionne parfaitement dans le mode immé­
diat, mais que se passe-t-il si vous souhaitez intégrer des changements
de couleurs dans vos programmes?

Quand nous avons présenté le programme «balle rebondissante»,
vous avez vu la façon dont des commandes du clavier, comme le déplace­
ment du curseur, pouvaient être incorporées dans les instructions PRINT.
De façon analogue, vous pouvez également ajouter des changements
des couleurs du texte à vos programmes.
Vous disposez d’une gamme complète de 16 couleurs de texte. Les
couleurs suivantes sont disponibles en utilisant la to u c h e ^ ^ B et une
touche numérique:

1 2 3 4 5 6 7 8
noir blanc rouge turquoise pourpre vert bleu jaune

56

Si vous maintenez la touche B enfoncée ensemble avec la touche
numérique appropriée, ces 8 couleurs supplémentaires peuvent être
utilisées:

1 2 3 4 5 6 7 8
orange brun rouge clair gris 1 gris 2 vert clair bleu clairgris 3

Frappez NEW et essayez le suivant. Maintenez la to u ch e E E l enfoncée
et simultanément appuyez sur la toucheO • Ensuite, appuyez sur la
touche Q sans maintenir la touche Q B enfoncée. A présent, tout en
maintenant la touche Q 3 enfoncée, appuyez simultanément sur la
touche Q . Relâchez la touche 4«yy|et appuyez sur la toucheO Avancez
dans les chiffres en alternant avec les lettres et frappez le mot COULEURS
comme suit:

10 PRINT” C O U L E U R E S ”
î î î î î î î î ' î

RUN
COULEURS

Tout comme les commandes du curseur qui sont affichées sous forme
de caractères graphiques à l’intérieur des guillemets des instructions
d’affichage les commandes de couleurs sont également représentées
sous forme de caractères graphiques. Dans l’exemple précédent, lorsque
vous maintenez enfoncée tout en appuyant s u r Q , un «£» a été
affiché. Q a affiché une «<— ». Chaque commande de couleur
affiche son code de couleur graphique unique lorsqu’il est utilisé de cette
façon. Le tableau ci-dessous fournit les représentations graphiques de
chaque commande de couleur qui peut être affichée.

CLAVIER COULEUR AFFICHAGE CLAVIER COULEUR AFFICHAGE

NOIR E B O ORANGE r i
L, U

BLANC B B Q BRUN R
ROUGE B B Q ROUGE CLAIR K
TURQUOISE B B O GRIS 1 m
POURPRE m B Q GRIS 2

M

VERT n B Q VERT CLAIR II
BLEU H BQ BLEU CLAIR □
JAUNE □ BQ GRIS 3

■■■■

Même si l’instruction PRINT peut paraître un peu étrange sur l’écran,
quand vous passez le programme, seul le texte est affiché. Et il modifiera

57

automatiquement les couleurs conformément aux commandes de
couleurs que vous avez placées dans l’instruction PRINT.

Essayez vous-même quelques exemples en mélangeant plusieurs
nombres de couleur dans une seule instruction PRINT. Rappelez-vous
également que vous pouvez utiliser le second jeu de couleurs de texte en
employant la touche Commodore et les touches numériques.

CONSEIL:
Vous noterez, après avoir passé un programme avec des modifications de couleurs

ou de modes (inversé), que l’ information «READY» et n ’importe quel texte supplé­
mentaire que vous tapez est identique à la dernière couleur ou à la dernière m odifica­
tion de mode. Pour revenir à l’affichage normal, rappelez-vous qu ’il faut appuyer sur:

et ^ ^ ^ 0 .

CODES DE COULEURS CHR$
Jetez un coup d’oeil sur l’annexe F, puis revenez à cette section.
Vous pouvez avoir noté, en observant la liste des codes CHR$ de

l’annexe F, que chaque couleur (de même que la plupart des autres
commandes du clavier, telles que le déplacement du curseur) possède
un code unique. Ces codes peuvent être directement affichés pour obte­
nir les mêmes résultats qu’en appuyant sur la touche et la touche
appropriée dans l’instruction PRINT.

Par exemple, essayez ceci:

10 PRINT CHR$a47'.> : REM CLR/HOME
20 PRINT CHR$(30).:"CHRfC30) ME COLORE?"

READY.

Le texte doit à présent être vert. Dans de nombreux cas, l’utilisation de
lafonction CHR$sera beaucoup plusfacile, en particulier si voussouhai-
tez expérimenter en changeant les couleurs. Vous trouverez à la page
suivante un autre moyen pour obtenir un arc-en-ciel. Vu qu’il y a un
certain nombre de lignes qui sont similaires (4-10), utilisez les touches
d’édition pour sauvegarder une grande partie de ce qui est frappé. Voir
les remarques après la liste pour rafraîchir votre mémoire sur les procé­
dures d’édition. 1

1 REM BRRRES DE COULEURS AUTOMATIQUES
5 PRINTCHR$<147) : REM CHR$<147>* CLR/HOME
10 PRINT CHR$(18); " = REM BRRRE REVERS
20 CL = INT<16#RNB<1))+l

58

30 OM CL GOTO 40,50,60,70,80,90,100,110,120;130;140i130,160,170,180,190
40 PRINTCHRK5);: GOTO 10
50 PRINTCHR$<28)¡: GOTO 10
60 PRINTCHR$(30),: GOTO 10
70 PRINTCHRÍ(31),: GOTO 10
30 PRINTCHR$(144) j : GOTO 10
90 PRINTCHR*<156>;: GOTO 10
100 PRINTCHR«<158);: GOTO 10
110 PRINTCHRSC159);: GOTO 10
120 PRIHTCHR$(129);: GOTO 10
130 PRINTCHR$(149) > '■ GOTO 10
140 PRINTCHR$(130).: : GOTO 10
150 PRINTCHR*(151>;: GOTO 10
160 PRINTCHR$(152);: GOTO 10
170 PRINTCHRK153), : GOTO 10
180 PRINTCHRÍC134)J : GOTO 10
190 PRINTCHR$(155);: GOTO 10

Frappez les lignes 5 à 40 normalement. Votre écran doit afficher
l’ordre suivant:

1 REM HUTOMRTIC COLOR BRR2
5 PRINT C'HRT '■ 1 47 > : REM CHRT < 147 > = CL R,'HOME
10 PRINT CH R T 1 8 > : " " ; : REM REVERSE E:RRS
20 CL = INT1 S+RNÜ' 1 :■ - + 1
70 ijH CL GOT0 40 , C-O , 60 , 70 , SÜ , SO ,100,110
40 PRINT C H R t 5 > ; : G 0 T 0 10

REMARQUES D’EDITION
Utilisez la touche CRSR-UP pour positionner le curseur sur la ligne 40.

Ensuite, frappez 5 au-dessus du 4 de 40. Après quoi, utilisez la touche
CRSR-RIGHT pour déplacer le curseur sur 5 dans les parenthèses CHR$.
Appuyez sur les touches f a ; n a a pour ouvrir un espace et frappez
«28». Maintenant, enfoncez seulement la touche S S Q S avec lecurseur
se trouvant n’importe où sur la ligne. L’affichage doit à présent être le
suivant:

NEW
1 REM RUruMRilL CUL'JR BRR2
5 P R IN T CH R T 1 47 > : REM CHRT í 1 4 7';'= CL R/HOME
10 PP I NT C H R * I E C - ; " " ? :PEM REVEREE BRF:
20 CL = I NT ■: E + RND 1 > > + 1
20 ON CL GOT O 40 ., 5¡ O , 6 O , 7 O , 20., 3 O , 1 0 0 , 1 1 0
j 0 RR IN T C H R $ '2 o) r : GOTO 10

59

Ne vous inquiétez pas. La ligne 40 est toujours présente. Listez le pro­
gramme et vous le constaterez. En utilisant la même procédure, conti­
nuez à modifier la dernière ligne par un nouveau numéro de ligne et le
code CHR$ jusqu’à ce que toutes les lignes restantes aient été entrées.
Voyez, nous vous avons dit que les touches d’impression seraient utiles.
Atitrede contrôle final, lister la totalité du programme pours’assurerque
toutes les lignes ont été correctement entrées avant de passer le pro­
gramme.

Vous trouverez ci-desàous une brève explication de ce qui se passe.
Vous avez probablement saisi la plus grande partie du programme des

barres de couleurs jusqu’à présent, sauf une certaine nouvelle instruc­
tion étrange ligne 30. Mais voyons rapidement ce que le programme est
actuellement en train de faire. La ligne 5 affiche le code CHR$ pour
CLR/HOME

La ligne 10 inverse la frappe et laisse 5 espaces qui à leur tour doivent
être une barre, vu qu’ils sont inversé. La première fois, dans le pro­
gramme, la barre sera bleu clair, la couleur normale du texte.

La ligne 20 utilise notre cheval de bataille, la fonction aléatoire pour
sélectionner une couleur aléatoire entre 1 et 8. La ligne 30 contient une
variation de l’instruction IF . . . THEN qui est intitulée ON . . . GOTO.
ON ... GOTO permet au programme de choisir où aller à partir d ’une liste
de numéros de ligne. Si la variable (dans ce cas CL) possède une valeur
de 1, le premier numéro de ligne est celui choisi (ici 40). Si la valeur est 2,
le second numéro de ligne de la liste est utilisé, etc.

Les lignes 40-110 convertissent uniquement nos couleurs clés aléa­
toires dans le code CHR$ approprié pour la couleur concernée et
ramènent le programme à la ligne 10 pour afficher unesection de la barre
dans cette couleur. Ensuite, tout le processus recommence.

Regardez, si vous arrivez à produire 16 nombres aléatoires, élargissez
ON . . . GOTO pour les traiter et ajoutez les codes CHR$ restants pour
afficher les 8 couleurs restantes.

PEEK et POKE
Non, nous n’allons pas parler de piquer l’ordinateur, mais nous serons

en mesure de jeter un coup d’oeil à l’intérieur de la machine et de «percer
à jour» certaines choses en elle.

Tout comme les variables qui peuvent être considérées comme des
«cases» à l’intérieur de la machine où vous avez placé vos informations,
vous pouvez également imaginer certaines cases définies à l’intérieur de

60

l’ordinateur qui représentent des emplacements spécifiques de la
mémoire.

Le COMMODORE 64 examine ces emplacements de la mémoire pour
voir quels doivent être le fond de l’écran ou la couleur du cadre, quels
sont les caractères qui doivent être affichés sur l’écran - et où - et une
multitude d’autres tâches.

En mettant (POKEing) une valeur différente dans l’emplacement res­
pectif de la mémoire, nous pouvons modifier des couleurs, définir et
déplacer des objets et même créer de la musique.

Ces emplacements de la mémoire peuvent être représentés de la façon
suivante:

53280 53281 53282 53283
X Y

COULEUR COULEUR
DU CADRE DU FOND
Page 60, nous avons seulement représenté 4 emplacements, dont deux

commandent les couleurs de l’écran et du fond.
Essayez de frapper ceci:

POKE 53281,7 RETURN

La couleur du fond de l’écran passe au jaune, étant donné que nous
avons mis la valeur «7» pour le jaune dans l’emplacementqui commande
la couleur du fond de l’écran.

Essayez de POKEing (mettre) différentes valeurs dans l’emplacement
de la couleur du fond et observez les résultats que vous obtenez. Vous
pouvez mettre n’importe quelle valeur entre 0 et 255, mais seules les
valeurs de 0 à 15 fonctionnent.

Les valeurs effectives à mettre pour chaque couleur sont les suivantes.

0 noir 8 orange
1 blanc 9 brun
2 rouge 10 rouge clair
3 turquoise 11 gris 1
4 pourpre 12 gris 2
5 vert 13 vert clair
6 bleu 14 bleu clair
7 jaune 15 gris 3

Pouvez-vous imaginer un moyen d’afficher les différentes combi­
naisons de cadre et de fond? Les indications ci-dessous peuvent vous
quelque aider peu.

61

NEW

10 FOR BR = 0 TO 15
2 0 FOR B O = 0 TO 15
3 0 POKE 53280 .- BR
4 0 POKE 5 3 2 8 1 , BO
5 0 FOR X = 1 TO 2 0 0 O : NEXT
6 0 NEXT BO : NEXT BR

RIJN

Deux boucles simples ont été déterminées pour POKE (mettre)
différentes valeurs de manière à modifier les couleurs du fond et du
cadre. La boucle DELAY (retard) de la ligne 5 ralentit un peu les choses.

Pour les curieux, essayez:

? PEEK (53280) AND 15

Vous devriez obtenir une valeur de 15. Il s’agit de la dernière valeur
donnée au cadre et c’est évident parce que les deux couleurs du fond et
du cadre sont grises (valeur 15) après le passage du programme. En
entrant AND 15, vousélimineztoutes les autres valeurs, misesà part 1-15,
en raison de la façon dont les codes de couleur sont mémorisés dans
l’ordinateur. Normalement, vous devriez vous attendre à trouver la même
valeur que celle qui a été POKEd (mise) en dernier lieu sur l’emplacement.
En règle générale, PEEK nous permet d’examiner un emplacement
spécifique et de constater quelle valeur s’y trouve actuellement. Pouvez-
vous imaginer un supplément d’une ligne au programme qui afficherait
la valeur du fond et du cadre quand le programme est passé? par
exemple le suivant:

25 PRINT CHR$(147); “CADRE = “;PEEK 53280) AND 15, “FOND =
PEEK (53281) AND 15

GRAPHIQUES DE L’ECRAN
Dans tous les affichages d’informations que vous avez réalisés jusqu’à

présent, l’ordinateur a normalement traité les informations d’une façon
séquentielle: Un caractère est affiché après l’autre en commençant par
l’actuelle position du curseur (sauf si vous avez demandé une nouvelle
ligne ou utilisé le «,» dans le formatage PRINT).

Pour afficher (PRINT) des données dans un position particulière, vous
pouvez commencer à partir d ’un emplacement connu sur l’écran et

62

afficher (PRINT) le nombre adéquat de commandes du curseur pour for­
mater l’image. Mais ceci nécessite plusieurs pas du programme et
demande du temps.

Mais, tout comme il existe certaines positions dans la mémoire du
COMMODORE 64 pour commander les couleurs, il existe également des
emplacements que vous pouvez utiliser pour commander directement
chaque point sur l’écran.

MEMOIRE DE L’ECRAN
Vu que l’écran de l’ordinateur est capable de retenir 1000 caractères

(colonnes de 25 lignes), 1000 emplacements de la mémoire sont réservés
pour traiter ce qui est placé sur l’écran. La disposition de l’écran pourrait
être considérée comme une grille, chaque carré représentant un
emplacement de la mémoire.

Et vu que chaque emplacement de la mémoire peut contenir un nombre
de 0 à 255, il existe 256 valeurs possibles pour chaque emplacement de
la mémoire. Ces valeurs représentent les différents caractères que le
COMMODORE 64 peut afficher (voir annexe E). En mettant (POKE) la
valeur d’un caractère dans l’emplacement approprié de la mémoire de
l’écran, ce caractère sera affiché dans la bonne position.

COLONNE
0 10 20 30 39

1063

63

La mémoire de l’écran du COMMODORE 64 commence normalement
sur l’emplacement de la mémoire 1024 et s’achève sur l’emplacement
2023. L’emplacement 1024 est le coin supérieur gauche de l’écran.
L’emplacement 1025 est la position du caractère suivant à droite du pré­
cédent, etc. le long de la ligne. L’emplacement 1063 est la position la plus
à droite de la première ligne. L’emplacement suivant le dernier caractère
sur une ligne est le premier caractère de la ligne immédiatement dessous.

A présent, disons que vous commandez le rebondissement d’une balle
sur l’écran. La balle est au centre de l’écran, colonne 20, ligne 12. La
formule de calcul de la position de la mémoire sur l’écran est la suivante:

i " COLONNE
POINT 1024 + X + 40*Y --------------------l ig n e

où X est la colonne et Y est la ligne.
En conséquence, l’emplacement de la mémoire de la balle est:

1024 + 20 + 480 or 1524 COLONNE
LIGNE

Effacez l’écran avec SHIFT 31 CIP/H0ME et frappez:

POKE 1524,81
CODE DE CARACTÈRE
EMPLACEMENT

MEMOIRE DES COULEURS
Une balle apparaît au centre de l’écran! Vous avez placé un caractère

directement dans la mémoire de l’écran sans utiliser l’instruction PRINT.
La balle qui apparaît était blanche. Cependant, il existe un moyen pour
modifier la couleur d’un objet sur l’écran en modifiant une autre partie de
la mémoire. Frappez:

f ------- — EMPLACEMENT
POKE 55796,2 - ----------c o u l e u r

La couleur de la balle passe au rouge. Pour chaque point sur l’écran du
COMMODORE 64, il existe deux emplacements de la mémoire, un pour le
code caractère et l’autre pour le code couleur. La carte de la mémoire des
couleurs commence à l’emplacement 55296 (coin supérieur gauche) et
se poursuit sur 1000 emplacements. Les mêmes codes de couleurs de
0 à 15 que ceux utilisés pour modifier les couleurs du cadre et du fond
peuvent être employés ici pour directement modifier les couleurs des
caractères. La formule que nous avons utilisée pour le calcul des em­
placements de la mémoire de l’écran peut être modifiée pour mettre les

64

COLONNE
0 10 20 30 39

55335r
55296— -
55336
55376
55416
55456
55496
55536
55576
55616
55656
55696
55736
55776
55816
55856
55896
55936
55976
56016
56056
56096
56136
56176
56216
56256

56295

emplacements à la disposition des codes de couleurs POKE. La nouvelle
formule est la suivante:

EMPLACEMENT DU CODE DE COULEURS = 55296 + X 4- 40*Y

ENCORE UN JEU
Voici un programme de rebondissements de balles révisé qui est

affiché directement sur l’écran avec les POKEs plutôt que d ’utiliser les
commandes du curseur dans les instructions PRINT. Comme vous le
constaterez après avoir passé le programme, il est beaucoup plus souple
que le programme antérieur et conduit à programmer une animation plus
sophistiquée.

NEW

10 PRINT " {CLR/HOME}"
20 POKE 53280 ,7 : POKE 53281,13
30 X = 1 : V = 1
40 DX = 1 : DV = 1
50 POKE 1024 + X + 40*V ,81
60 FOR T = 1 TO 10 : NEXT
70 POKE 1024 + X + 40 *V ,32
30 X = X + DX
90 IF X = 0 OR X = 39 THEN DX = -DX

65

100 V = V + DV
110 IF V = 0 OR V = 24 THEN DV = -DV
120 GOTO 50

La ligne 10 efface l’écran et la ligne 20 règle le fond sur le vert clair avec
un cadre jaune.

Les variables X et Y de la ligne 30 retiennent l’actuelle position de la
colonne et de la ligne de la balle. Les variables DXet DY de la ligne 40 sont
les directions horizontales et verticales du déplacement de la balle.
Lorsque + 1 est ajouté à la valeur X, la balle est déplacée vers la droite;
lorsque -1 est ajouté, la balle se déplace vers la gauche. + 1 ajouté à Y
déplace la balle sur la ligne inférieure -1 ajouté à Y déplace la balle sur la
ligne supérieure.

La ligne 50 place la balle sur l’écran dans l’actuelle position du curseur.
La ligne 60 est la boucle de retard déjà familière, laissant la balle sur
l’écran juste assez longtemps pour la voir.

La ligne 70 efface la balle en plaçant un espace (code 32) à l’endroit où
la balle était sur l’écran.

La ligne 80 ajoute le facteur de direction à X. La ligne 90 fait un test pour
vérifier si la balle a atteint l’une des limites latérales en inversant la direc­
tion s’il y a lieu.

Les lignes 100 et 110 effectuent la même chose sur les limites
supérieures et inférieures. La ligne 120 renvoie le programme à
l’affichage et répète les mouvements de la balle.

En modifiant le code des lignes 50 à 81 en un autre code de caractère,
vous pouvez modifier la balle en tout autre caractère. Si vous modifiez
DX ou DY en 0, la balle rebondit tout droit et non en diagonale.

Vous pouvez également rendre le programme un peu plus intelligent.
Jusqu’à présent, la seule chose que vous avez contrôlée était la valeur de
X et Y dues aux rebondissements sur l’écran.

Ajoutez la ligne suivante au programme.

21 FOR L = 1 TO 10
25 POKE 1024 + INT < RND <1> $ 1 0 0 0 > , 166
27 NEXT L
115 IF PEEK<1024 + X + 40*Y> = 166 THEN DX = -D X :

GOTO 80

Les lignes 21 à 27 placent 10 blocs sur l’écran dans des positions aléa­
toires. La ligne 115 (PEEK) vérifie si la balle est prête à rebondir sur un
bloc et change la direction de la balle si c’est le cas.

6 6

CHAPITRE

GRAPHIQUES
DE SYLPHES

• Introduction aux sylphes
• Création de sylphes
• Arithmétique binaire

67

INTRODUCTION AUX SYLPHES
Nous avons vu dans les précédents chapitres traitant des graphiques

que les symboles graphiques pouvaient être utilisés dans des instruc­
tions PRINT pour créer une animation et ajouter des apparences de
tableau à nos affichages.

Une façon a également été présentée de «POKE» (mettre) des codes de
caractères dans des emplacements spécifiques de la mémoire de
l ’écran. Ceci place alors les caractères appropriés directement sur
l’écran sur le coin droit. Dans ces deux cas, la création d’une animation
nécessite un grand travail étant donné que des objets doivent être créés à
partir de symboles graphiques existants. Le déplacement des objets
nécessite un certain nombre d ’instructions de programmation pour
poursuivre l’objet et le déplacer sur un nouveau point. Et en raison de la
restriction de l’utilisation de symboles graphiques, la forme et la réso­
lution de l’objet peuvent ne pas être aussi bonnes qu’exigées.

L’utilisation de sylphes dans les séquences animées élimine un grand
nombre de ces problèmes. Un sylphe est un objet programmable à haute
résolution qui peut être constitué sous presque n’importe quelle forme -
par l’intermédiaire de commandes BASIC. L’objet peut être aisément
déplacé autour de l’écran en indiquant simplement à l’ordinateur la
position à laquelle le sylphe doit être déplacé. L’ordinateur s’occupera
du reste.

Et les sylphes sont encore beaucoup plus performants. Leur couleur
peut être modifiée; vous pouvez déterminer si un objet entre en collision
avec un autre; ils peuvent être constitués pour passer devant ou derrière
l’un de l’autre et leur dimension peut être aisément agrandie, surtout au
début.

L’inconvénient de toutes ces fonctions est minime. Cependant, l’utili­
sation de sylphes nécessite la connaissance de certains détails supplé­
mentaires sur la façon dont fonctionne le COMMODORE 64 et la façon
dont les chiffres sont traités par l’ordinateur. Ce n’est pas aussi difficile
que l’on pourrait le croire. Il suffit de suivre les exemples et vous créerez
très rapidement vos propres sylphes pour réaliser une animation.

6 8

CREATION DE SYLPHES
Les sylphes sont commandés par un synthétiseur d’image séparé du

COMMODORE 64 le Vidéo interface Chip. Le synthétiseur d’image agit
sur l’affichage vidéo. Il accomplit le travail difficile de création et de suivi
des caractères et graphiques, de création de couleurs et du mouvement.

Ce circuit d’affichage possède 46 positions différentes ON/OFF qui
agissent comme des emplacements de mémoire internes. Chacun de ces
emplacements se subdivise en une série de 8 blocs. Et chaque bloc peut
être soit «ON», soit «OFF». Nous en parlerons plus en détail plus tard.
En POKEing (mettant) la valeur décimale appropriée sur le bon emplace­
ment de la mémoire, vous pouvez commander la formation et le déplace­
ment de vos créations de sylphes.

D’autre part, pour accéder à de nombreux emplacements de synthéti-
sation de l’image, nous ferons également appel à une certaine partiede la
mémoire centrale du COMMODORE 64 pour mémoriser les informations
(données) qui définissent les sylphes. Finalement, huit emplacements de
mémoire immédiatement après la mémoire de l’écran sont utilisés pour
dire exactement à l’ordinateur de quelle zone de la mémoire chaque
sylphe obtient ses données.

Au fur et à mesure que nous explorerons certains exemples, la procé­
dure deviendra de plus en plus claire et vous en comprendrez le sens.

Passons maintenant à la création de certains graphiques de sylphes.
Un objet de sylphe comprend 24 points de large sur 21 points de long.
Jusqu’à 8 sylphes peuvent être commandés simultanément. Les sylphes
sont affichés dans un mode spécial à haute résolution qui transforme
l’écran en une zone d’une largeur de 320 points et d’une hauteur de 200
points.

Admettons que vous souhaitiez créer un ballon et le voir voler dans le
ciel. Le ballon peut être conçu dans la grille de 24 x 21 (page 70).

La prochaine étape consiste à convertir la conception graphique en
données que l’ordinateur peut utiliser. Prenez un bloc-note ou du papier
millimétrique et constituez un exemple de grille de 21 espaces verticaux
et 24 espaces horizontaux. En haut inscrivez 128, 64, 32,16, 8, 4, 2,1 trois
fois (comme indiqué) pour chacun des 24 carrés. Numérotez en des­
cendant le côté gauche de la grille de 1 -21 sur chaque ligne. Inscrivez le
mot DATA à la fin de chaque ligne. A présent, remplissez la grille d’un
dessin quelconque ou utilisez le ballon précité. Il est plus facile d’é­
baucher d’abord les contours pour ensuite revenir en arrière pour remplir
la grille. A présent, imaginez tous les carrés que vous avez remplis
comme étant «ON» et substituez un 1 à chaque carré rempli. Pour ceux
qui ne sont pas remplis, ils sont «OFF», mettez alors un zéro.

69

En commençant au début de la ligne, vous avez besoin de convertir les
points en trois blocs de données que l’ordinateur peut lire. Chaque en­
semble de 8 carrés est égal à un bloc de données appelé un octet dans
votre ballon. En partant de la gauche, les 8 premiers carrés sont blancs,
ou 0, si bien que la valeur de cette série de nombres est 0.

SÉRIE 1 SÉRIE 2 SÉRIE 3
128 32 8 2 128 32 8 2 128 32 8 2

La série centrale a l’aspect suivant (à nouveau un 1 indique un point,
0 un espace):

128 64 32 16 8 4 2 1
0 1 1 1 1 1 1 1
* + + + + + +
0 + 64 + 32 + 16 + 8 + 4 + 2 + 1 = 127

La troisième série de la première ligne contient également des blancs,
si bien qu’elle est également égale à 0. En conséquence, les données de
la première ligne sont:

DATA 0, 127,0

Les séries qui constituent la ligne 2 sont calculées comme suit:

0 0 0 0 0 0 0 1

70

255

1 2 8 + 6 4 = 1 9 2

Pour la ligne 2, les données seraient les suivantes:

DATA 1,255, 192

De la même façon, les trois séries qui constituent chaque ligne restante
seraient converties dans leur valeur décimale. Prenez le temps pour
effectuer le reste de la conversion de cet exemple.

A présent que vous avez les données de votre objet, comment peut-il
être utilisé?
Frappez le programme suivant et observez ce qui se passe.

I REM UP, UP, AND AWRV!
3 PRINT” CLR/HOME H
10 V*53248;REM ADRESSE DE BASE DU VIC
II P0KEV+21.4ÎREH ACTIVATION DU SVLPHE 2
12 POKE2042,13:REM DONNEES POUR SVLPHE 2DEPUIS BLK 13
20 FORN-0TO62‘READQ:PQKE832+N,Q :NEXT
30 FORX*0TO200 Obtient cette information de DATA*
40 P0KEV+4,X:REM NOUVEAU COORDONNE X
50 P0KEV+5,X:REM NOUVEAU COORDONNE V
60 NEXTX
7 0 QQTQ30_________________________ _____Information lue à partir de Q*
200 DATA0,127,0,1,233,192,3,255,224,3,231,224
210 DATA?,217,240,7,223,240,7,217,240,3,231,224
220 DATA3,235,224,3,255,224,2,253,160,1,127,64
230 DATAI,62,64,0,156,128,0,136,128,0,73,0,0,73,0,0
240 DATA62,0,0,62,0,0,62,0,0,28,0

* Pour plus de détails sur READ et DATA se reporter au chapitre 8.

Si vous avez tout tapé correctement, votre ballon vole doucement dans
le ciel (page 72).

Pour comprendre ce qui se passe, vous avez en premier lieu besoin de
savoir quels sont les emplacements synthétisant l’image qui comman­
dent les fonctions dont vous avez besoin. Ces emplacements intitulés
registres peuvent être illustrés comme suit:

Registre Description
0 Coordonnée X du sylphe 0
1 Coordonnée Y du sylphe 0
2-15 Appariés tel que 0 et 1 pour les sylphes 1 -7

71

16 Bit le plus significatif -coordonée X
21 Apparition du sylphe: 1 = apparaît, 0 = disparaît
29 Dilatation du sylphe dans la direction X
23 Dilatation du sylphe dans la direction Y
39-46 Couleur du sylphe 0-7

En plus de cette information, vous avez besoin de savoir à partir de
quelle section de 64 blocs chaque série de 8 blocs de mémoire obtient
des sylphes dans ses données (1 série n’est pas utilisée).

Ces données sont traitées par 8 emplacements immédiatement après
la mémoire de l’écran:

2040 41 42 43 44 45 46 2047
t * * t t t t t

SYLPHEO 1 2 3 4 5 6 7

A présent, penchons-nous sur la procédure exacte qui fait bouger les
objets pour ensuite écrire un programme.

Seules peu de choses sont nécessaires pour effectivement créer et
déplacer un objet.

1. Faites apparaître le bon sylphe sur l’écran par «POKEing» (insertion)
sur l’emplacement 21 qui fait apparaître le sylphe.

2. Réglez le pointeur de sylphe (emplacement 2040-7) sur l’emplace­
ment d’où les données du sylphe doivent être lues.

3. POKE (mettre) les données effectives dans la mémoire.

72

4. Par l’intermédiaire d’une boucle, remettez à jour les coordonnées X et
Y pour déplacer le sylphe.

5. Vous pouvez en option dilater l’objet, changer les couleurs ou effec­
tuer une variété de fonctions spéciales. Utilisez l’emplacement 29
pour dilater votre sylphe dans la direction X et l’emplacement 23 dans
la direction Y.

Il n’existe que peu de points du programme qui peuvent ne pas vous
être familiers après les discussions tenues jusqu’à présent.

A la ligne 10
V = 53248

règle V sur l’emplacement de départ de la mémoire de la puce vidéo. De
cette façon, nous augmentons seulement V par le numéro de la mémoire
pour obtenir l’emplacement effectif de la mémoire. Les numéros du
registre sont ceux indiqués sur la carte des registres.

A la ligne 11
POKE V -1-21,4

fait apparaître le sylphe 2 en plaçant un 4 dans ce qui est appelé le registre
de libération (21) pour faire apparaître le sylphe 2. Imaginez le comme
suit:

128

Z-*"
64 32 16

Sylphes
— -- Valeurs décimales de chaque numéro de sylphe

" 8 4 2 1

1
21

Numéro du niveau de sylphe

= 4

■ Placez un 1 pour le sylphe que vous souhaitez

Chaque niveau de sylphe est représenté dans la section 21 de la mé­
moire des sylphes et 4 apparaît comme étant le niveau de sylphe 2. Si
vous utilisez le niveau 3, vous placez un 1 dans le sylphe 3 qui possède
une valeur de 8. En fait, si vous utilisez les deux sylphes 2 et 3, vous placez
un 1 aussi bien dans 4 que 8. Vous additionnez alors les nombres tout
comme vous l’avez fait avec les données sur votre papier millimétré.
Ainsi, les sylphes 2 et 3 sont représentés par V + 21,12.

A la ligne 12
POKE 2042,13

ordonne à l’ordinateur de prendre les données du sylphe 2 (position 2042)
à partir de la treizième zone de la mémoire. Vous savez, à partir de la
synthétisation de votre sylphe, qu’il occupe jusqu’à 63 sections dans la

73

mémoire. Vous pouvez ne pas l’avoir réalisé mais les nombres que vous
placez en haut de votre grille équivalent à ce que l’on appelle trois octets
de l’ordinateur. En conséquence, avec les 21 lignes de votre grille multi­
pliés par les 3 octets de chaque ligne, chaque sylphe occupe 63 octets de
la mémoire.

20 FOR N = 0 TO 62: READ Q: POKE 832 + N,Q: N EXT

Cette ligne assure la création effective des sylphes. Les 63 octets de
données qui représentent le sylphe que vous avez créé sont lus dans la
boucle et POKEd (mis) dans le troisième bloc de la mémoire. Ceci
commence par l’emplacement 832.

30 FOR X - 0 TO 200
40 POKE V + 4VX ~ T Coordonnée X du second sylpheA
50 POKE V + ̂ ,X_______ ^C oo rdon née Y d usecon d^

51 vous rappelez de l’école que la coordonnée X représente un dé­
placement horizontal des objets sur l’écran et que la coordonnée Y un
déplacement vertical du sylphe sur l’écran, il en résulte que, lorsque les
valeurs de X passent ligne 30 de 0 à 200 (un chiffre à la fois), le sylphe se
déplace à travers l’écran vers le bas à droite d’un espace pour chaque
chiffre. Les chiffres sont lus par l’ordinateur suffisamment rapidement
pour faire apparaître le mouvement comme étant continu au lieu d’être
séquentiel. Si vous avez besoin de plus de détails, jetez un coup d’oeil sur
la carte de registres, annexe O. Si vous mettez en mouvement des objets
multiples, il est impossible pour une seule section de la mémoire de
remettre à jour les emplacements de tous ces objets. Par conséquent,
chaque sylphe possède son propre jeu de 2 sections de mémoire pour se
déplacer sur l’écran. La ligne 70 redémarre le cycle après un passage sur
l’écran. Le reste du programme concerne les données du ballon. Elles se
présentent vraiment d’une autre manière sur l’écran n’est-ce-pas?

A présent, essayez d’ajouter la ligne suivante:

25 POKE V+23,4: POKE V+29,4: REM EXPAND

et repassez le programme. Le ballon s’est dilaté à deux fois sa dimension
d’origine! Ce que nous avons fait est simple. En POKEing (mettant) 4 (à
nouveau pour indiquer le sylphe 2) dans les sections de mémoire 23 et 24
le sylphe 2 a été dilaté dans les directions X et Y. Il est important de noter
que le sylphe démarre dans le coin supérieur gauche de l’objet. Lors de la
dilatation d’un objet dans une direction ou l’autre, le point de départ reste
le même. Pour rendre les choses plus intéressantes, introduisez les
modifications suivantes:

74

11 POKE V+21,12
12 POKE 2042,13: POKE 2043,13
30 FOR X = 1 to 190
45 POKE V+6,X
55 POKE V+7,190-X

Un second sylphe (numéro 3) a été représenté en POKEing (mettant)
12 dans l’emplacement de la mémoire, ce qui fait apparaître le sylphe
(V+21). Le 12 fait apparaître les sylphes 3 et 2 (00001100 = 12).

Les lignes supplémentaires 45 et 55 font faire un mouvement circulaire
au sylphe 3 en POKEing (mettant) les valeurs dans les positions des
coordonnées X et Y du sylphe 3 (V+6 et V+7).

Souhaitez-vous rendre le ciel plus animé? Essayez d ’effectuer ces
additions:

11 POKE V+21,28
12 POKE 2042,13: POKE 2043,13: POKE 2044,13
25 POKE V+23,12: POKE V+29,12
48 POKE V+8,X
58 POKE V+9,100

Ligne 11, cette fois, fait apparaître, un autre sylphe (4) en POKEing
(mettant) 28 dans l’emplacement approprié «ON» de la section mémoire
des sylphes. Maintenant, les sylphes 2 -4 sont apparus (00011100 = 28).
La ligne 12 indique que le sylphe 4 obtient ses données à partir de la
même zone de la mémoire (13ème zone de la section 63) que les autres
sylphes en POKEing (mettant) 2044,13.

Ligne 25, les sylphes 2 et 3 sont dilatés en POKEing (mettant) 12
(sylphes 2 et 3 présents) dans les emplacements de mémoire des direc­
tions X et Y dilatés (V+23 et V+29).

La ligne 48 déplace le sylphe 3 le long de l’axe X. La ligne 58 positionne
le sylphe 3 à mi-course en bas de l’écran sur l’emplacement 100. Etant
donné que cette valeur ne change pas, contrairement à ce qu’elle a fait
auparavant avec X = 0 sur 200, le sylphe 3 ne se déplace qu’en direction
horizontale.

75

D’AUTRES REMARQUES AU SUJET DES SYLPHES
A présent que nous avons fait des expériences avec les sylphes, quel­

ques mots supplémentaires sont nécessaires. En premier lieu, vous
pouvez modifier la couleur d’un sylphe par l’un quelconque des 16 codes
de couleurs standards (0 - 15) que nous avons utilisés pour changer la
couleur des caractères. Vous les trouverez dans le chapitre 5 ou dans
l’annexe G.

Par exemple, pour amener le sylphe 1 sur le vert clair, frappez:
POKE V + 40, 13 (veillez à régler V = 53248). Vous pouvez avoir noté, en
utilisant les exemples relatifs aux programmes de sylphes, que l’objet
n’est jamais déplacé sur le bord droit de l’écran. Ceci est dû au fait que
l’écran comporte 320 points de large et que le registre de direction X ne
peut contenir qu’une valeur de 255. Comment alors pouvez-vous réussir
à faire passer un objet à travers tout l’écran?

Il existe un emplacement dans la carte de la mémoire qui n’a pas été
mentionné jusqu’à présent. L’emplacement 16 (de la carte) contrôle le
soi-disant bit le plus significatif MOST SIGNIFICANT BIT (MSB) de
l’emplacement de direction X de sylphes. En effet, ceci vous permet de
déplacer le sylphe en direction horizontale entre 256 et 320.

Le bit le plus significatif du registre X fonctionne comme suit: Après
que le sylphe a été déplacé sur l’emplacement X 255, introduisez une
valeur dans l’emplacement de la mémoire 16 représentant le sylphe que
vous souhaitez déplacer. Par exemple, pour obtenir que 2 se déplace sur
les emplacements horizontaux 256 - 230, POKE (mettre) la valeur du
sylphe 2 qui est (4) dans l’emplacement de la mémoire 16:

POKE V+16,4

A présent, commencez le déplacement dans le registre de direction X
usuel du sylphe 2 (qui est sur l’emplacement 4 de la carte) en commen­
çant à nouveau par 1. Vu que vous ne vous déplacez que de 64 autres
espaces, les emplacements X ne doivent cette fois n’être compris
qu’entre 0 et 63. Tout ce concept est mieux illustré par une version du
programme original du sylphe 1 :

10 V= 5324© : POKE V+21,4 : POKE 2042,13
20 FOR N = 0 TO 62 : REfiD Q : POKE 832+N,Q : NEXT
25 POKE V+5, 100
30 FOR X = 0 TO 255
40 POKE V+4,X
50 NEXT
60 POKE V+16,4
70 FOR X = O TO 63

76

80 POKE V+4r X
90 NEXT
100 POKE V+16 ,0
110 GOTO 30

La ligne 60 détermine le bit le plus significatif du sylphe 2. La ligne 70
démarre le mouvement de l’emplacement X de la direction standard,
déplaçant la sylphe 2 sur le reste du chemin à travers l’écran.

La ligne 100 est importante parce qu’elle «coupe» le bit le plus signi­
ficatif de telle manière que le sylphe puisse recommencer à se déplacer à
partir du bord gauche de l’écran.

ARITHMETIQUE BINAIRE
Des informations détaillées sur la façon dont l’ordinateur traite les

nombres dépasseraient le cadre de ce manuel d’introduction. Cepen­
dant, nous allons vous fournir une base pour la compréhension du pro­
cessus et vous permettre de vous lancer dans l’animation sophistiquée.
Mais, avant d’aller plus en avant, nous devons définir certains termes:

BIT - Il s’agit de la plus petite quantité d’informations qu’un
ordinateur puisse mémoriser.

Imaginez un BIT comme un interrupteur qui est soit fermé, soit ouvert
(ON ou OFF). Lorsqu’un bit est «fermé» (ON), il a une valeur de 1.
Lorsqu’un bit est «ouvert» (OFF), il a une valeur de 0.

Après le BIT, le niveau suivant est l’OCTET (BYTE).

OCTET (BYTE)-Celui-ci est défini comme étant une série de bits. Vu
qu’un OCTET est constitué de 8 BITS, vous pouvez
effectivement avoir un total de 255 combinaisons
différentes de BITS. En d’autres termes, vous pouvez
avoir tous les BITS sur «off» si bien que votre OCTET
a l’aspect suivant:

128 64 32 16 8 4 2 1
| o | o | o | o | o | o | o I ° 1

et sa valeur sera nulle. Si tous les bits sont sur «on», on obtiendra:
1 2 8 6 4 3 2 1 6 8 4 2 1 ^

I ' l i l i I i I i I i I i I i

ce qui équivaut à 128 + 64 + 32 + 16 + 8 + 4 + 2 + 1 = 255

La prochaine étape est intitulée un REGISTRE.

77

REGISTRE
Il est défini commeétant un bloc d’octets enchaînés. Mais, dans ce cas,

chaque registre n’a en fait la longueur que d’un octet. Une série de
registres constitue une carte de registres. Les cartes de registres sont
des tableaux identiques à celui que vous avez utilisé pour constituer
votre sylphe «ballon». Chaque registre commande une fonction
différente, telle que l’apparition du sylphe est en fait intitulée ENABLE
REGISTER (registre libération). Pour rendre le sylphe plus long, on utilise
l’EXPAND X REGISTER, alors que pour rendre le sylphe plus large, on
utilise l’EXPAND Y REGISTER. Rappelez-vous qu’un registre est un octet
qui assure une tâche spécifique.

Passons à présent au reste de l’arithmétique binaire.

CONVERSION BINAIRE EN DECIMALE
VALEUR DÉCIMALE

128 64 32 16 8 4 2 1
0 0 0 0 0 0 0 1 2 Î0
0 0 0 0 0 0 1 0 2 | 1
0 0 0 0 0 1 0 0 2 Î2
0 0 0 0 1 0 0 0 2 Î3
0 0 0 1 0 0 0 0 2 |4
0 0 1 0 0 0 0 0 2 |5
0 1 0 0 0 0 0 0 2 |6
1 0 0 0 0 0 0 0 217

En utilisant des combinaisons de 8 bits, vous pouvez obtenir n’importe
quelle valeur décimale comprise entre 0 et 255. Commencez-vous à com­
prendre pourquoi, lorsque nous POKEd (mettions) un caractère ou des
valeurs de couleurs dans des emplacements de la mémoire, les valeurs
devaient être comprises entre 0 et 255? Chaque emplacement de mé­
moire peut contenir un octet d’informations.

N’importe quelle combinaison possible de huit 0 et 1 est convertie en
une valeur décimale unique comprise entre 0 et 255. Si tous les emplace­
ments contiennent un 1, la valeur de l’octet est égale à 255. Tous les zéros
équivalent à une valeur d’octet de 0; «00000011 » équivaut à 3, etc. C’est la
base pour la création des données qui représente les sylphes et leur
manipulation. Considérons par exemple que ce groupement d’octets
représente une partie d’un sylphe (0 est un espace, 1 est une zone de
couleur):

27 2® 25 24 23 22 21 2°

128 + 64 + 32 + 16 + 8 + 4 + 2 + 1 + = 255

78

Alors nous mettons (POKE) 255 dans l’emplacement approprié de la
mémoire pour représenter cette partie de l’objet.

CONSEIL:
Pour vous épargner l ’inconvénient de convertir les nombres binaires en valeurs

déc im a les-ce qui est fréquemment nécessaire-le programme suivant réalise le travail
pour vous. Nous vous conseillons d ’entrer et de sauvegarder le programme pour vous
en servir plus tard.

3 REM CONVERSION BINAIRE EN DECIMALE
10 INPUT"ENTREE CHIFFRE BINAIRE DE SUBITS :";A$
12 IFLEN<A$)C8THENPRINT"8 BITS S.V.P..."-OOTO10
13 TL®0:C®0
20 F0RX-8TQ1 STEP-1‘C»C+1
30 TL*TL+VAL<MIDI<Af,C, l»#2î<X-l)
40 NEXTX
45 PRINT
30 PRINTA$j" BINAIRE V « "JTL;” DECIMALE”
53 PRINT
60 GOTO10

Ce programme prend votre nombre binaire qui a été entré sous la
forme d’une chaîne et analyse chaque caractère de la chaîne de gauche à
droite (la fonction MID$). La variable C indique sur quel caractère agir
lorsque le programme passe dans la boucle. La fonction VAL ligne 30
établit la valeur effective du caractère. Vu que nous traitons caractères
numériques, la valeur est la même que le caractère. Par exemple, si le
premier caractère de A$ est 1, la valeur sera également 1.

La partie finale de la ligne 30 multiplie la valeur du caractère en cours
par la puissance 2. Vu que la première valeur est l’emplacement 2]7 dans
l’exemple, TL devrait en premier lieu être égal à une fois 128 ou 128. Si le
bit est zéro, la valeur de cet emplacement devrait également être zéro.

Cette procédure est répétée pour la totalité des 8 caractères étant
donné que TL conserve la trace du passage de la valeur décimale du
nombre binaire.

79

CHAPITRE

CREATION DE SONS
AVEC LE

COMMODORE 64
• La structure d ’un programme sonore
• Exemple d ’un programme sonore
• Réglages importants du son
• Effets sonores

81

La création de sons à l’aide d’un ordinateur s’oriente à deux champs
d’application principaux: jouer de la musique et générer des effets sono­
res. Nous allons voir maintenant brièvement comment un programme
sonore est en général structuré, pour ensuite présenter un programme
qui vous permettra de faire des essais.

LA STRUCTURE D’UN PROGRAMME SONORE

La tonalité d’un son est déterminée par quatre éléments différents:
la hauteur du son, le volume du son, le timbre et le taux d’appui/
relâchement. Les dernières deux caractéristiques nous permettent de
distinguer différents instruments de musique par l’ouie. Vous désirez
donc certainement d’influencer ces caractéristiques importantes par
votre programme.

Dans ce but, votre COMMODORE 64 possède de nouveau SON propre
composant électronique construit à cet effet, appelé le SID (Sound Inter­
face Device). Le SID contient un certain nombre de zones de mémoire
pour les paramètres qui permettent de synthétiser le son. Vous savez déjà
que votre COMMODORE 64 peut créer trois voix en même temps; voyons
d’abord la première de ces trois voix.

L’adresse de base du SID - abrégée analogue au chapitre précédent
par la variable SI - est le 54272:

SI = 54272

La hauteur du son est définie dans la physique par la fréquence. La
fréquence est mémorisée dans le SID par un paramètre qui peut adopter
des valeurs entre presque zéro et 65000. Vous avez appris dans le chapitre
précédent que des chiffres d’une telle importance ne peuvent être
mémorisés dans une seule cellule de mémoire, nous devons donc diviser
le paramètre de fréquence en haute fréquence (octet plus élevé) et basse
fréquence (octet moins élevé), le plus souvent désigné par Hi-(High)-Byte
et Lo-(Low)-Byte.
Ces deux octets occupent les deux premiers registres du SID:

FL = SI (basse fréquence)
FH = SI+1 (haute fréquence)

Le volume du son dispose de 16 niveaux dans le SID, de zéro (éteint) à
15 (plein volume). Le paramètre correspondant est enregistré dans le
registre 24:

L = SI+24 (volume du son)

82

C’était encore facile. Nous voilà au timbre: il est en large mesure défini
par la forme d’ondes qui sont produites par l’instrument de musique
respectif. Le COMMODORE 64 vous propose quatre formes fonda­
mentales: triangle, dent de scie, rectangle (impulsion) et bruit. Vous
trouverez dans le manuel de programmation les instructions à savoir
comment modifier de manière sophistiquée les formes de base, ou
comment les influencer par les filtres. Il nous suffit pour l’instant de
connaître les formes de base: chacune d’elles est contrôlée par un bit
dans le registre 4:

W = SI+4 (forme d’ondes)

Pour sélectionner les formes de base citées ci-dessus, vous écrivez
dans ce registre l’un des paramètres suivants: 17, 33, 65 et 129. Si vous
choisissez le 65 (rectangle/impulsion), vous devez encore fixer un para­
mètre supplémentaire entre zéro et 4095 concernant le soi-disant taux
d’impulsions (le taux de votre rectangle entre «allumé» et «éteint»): les
deux octets de ce paramètre sont placés dans les registres 2 et 3:

TL = SI+2 (taux d’impulsions, basse fréquence)
TH = SI+3 (taux d’impulsions, haute fréquence)

Maintenant encore le plus captivant: le taux d’appui/relâchement,
l’évolution du son. Votre COMMODORE 64 fait monter d’abord chaque
son jusqu’au volume réglé dans le registre 24, puis le son descend de
nouveau légèrement pour enfin conserver son volume ainsi atteint tant
que vous le laissez allumé, puis, il cesse de résonner. Comme vous
pouvez le constater, quatre paramètres participent à cette «courbe en­
veloppante» qui sont supervisés par le SID dans deux autres registres:

A = SI+5 (taux d’appui/relâchement)
H = SI+6 (maintien)

Chacun de ces deux registres est épissé en deux parties (voir encore
une fois l’introduction dans l’arithmétique binaire dans le chapitre pré­
cédent): Le paramètre des quatre bits plus élevés de A règle la montée du
son, celui des quatre bits moins élevés la descente: les petits chiffres
signifient rapide, dure; les chiffres élevés lent, doux. Ceci est également
valable pour les quatre bits moins élevés de H qui contrôlent la résonance
du son quand il est éteint. Les quatre bits plus élevés de H déterminent le
volume du son au niveau duquel il est maintenu. De la valeur la plus
élevée résulte le volume du son réglé au préalable dans le registre 24, les
valeurs moins élevées réduisent plus ou moins le volume du son.

83

EXEMPLE D’UN PROGRAMME
Tout d’abord vous devez décider quelles voix (ou générateurs de sons)

vous voulez employer. Suivant les voix choisies, il faut alors déterminer
les quatre réglages mentionnés ci-dessus (volume du son, forme etc.)
pour chacune de ces voix. Vous avez la possibilité d’utiliser jusqu’à trois
voix simultanément, notre exemple ne porte cependant que sur la voix
no. 1.

10SI=54272: FL=SI: 1. Définition des registres d’adresses
FH = SI+1: W=SI+4:
A=SI+5: H = SI+6:
L=SI+24

20 POKE L,15 2. Plein volume du son
30 POKE A,16+9 3. Taux d’appui
40 POKE H,4*16+4 4. Maintien et résonance
50 POKE FH,29:POKE FL,69 5. Haute et basse fréquence, ici pour le

«la» du diapason. Les valeurs des autres
sons sont indiquées dans la liste de
l’annexe P.

60 POKE W,17 6. Forme d ’ondes. Doit toujours être
réglée en dernier, car le bit le plus bas
allume resp. éteind le générateur de
sons dans ce registre.

70FORT=1T0500:NEXT 7. Boucle pour régler la durée du son.
80 POKE W,0:POKE A,0: 8. Eteindre des réglages de formes d’on-

POKE H,0 des et de courbes enveloppantes.

Après avoir frappé RUN, vous pouvez écouter la note qui est créée au
moyen du présent programme.

84

JOUER DES MÉLODIES AVEC LE COMMODORE 64
Vous n’avez pas besoin d ’être un musicien pour créer de la musique

sur votre COMMODORE 64. Voilà l’exemple d’un programme qui vous
montrera comment faire. Nous employons de nouveau une seule voix
des trois voix à disposition.
Effacez le programme antérieur par NEW et frappez ce qui suit:

10REM ECHELLE
20 Sl = 54272: FL=SI:FHi=SI+1:

E=SI+4:A=SI+5:H = SI+6:
L=SI+24

30 POKE L,15
40 POKE A,9
50 READ X:READ Y

60 IFY= —1THEN POKE W,0:END
70 POKE FH,X:POKE FL,Y

80 POKE W,17
90 FORT=1TO100:NEXT

100 POKE W,0
110 FORT=1T050:NEXT
120 GOTO40
130 DATA17,103,19,137,21,237,

23,59,26,20,29,69,32,219,34,207

140 DATA—1,-1

Nom du programme

Définition des registres d’adresses

Plein volume du son

Taux d’appui

Lire les Hi-Byte et Lo-Byte de la fréquence des
lignes DATA 130,140

Lorsque le programme lit -1, il doit s’éteindre

Mettre (poke) les Hi-Byte et Lo-Byte dans les re­
gistres des fréquences (haute/basse fréquence)

Forme d’ondes, allumer le générateur

Durée du son

Eteindre le générateur

Brève pause pour cesser de résonner

Prochain son

Ces paires de chiffres représentent les sons de la
gamme majeure do (C), toujours une haute et une
basse fréquence à tour de rôle

Ces données (n’ayant pas de sens comme fré­
quences) signalent au programme dans la ligne
60 que la gamme musicale est achevée.

Pour produire des sons ressemblant à un clavecin, changer la ligne 80
pour lire:

POKE W,33

Par cette commande POKE, la forme «dent de scie» est sélectionnée
qui provoque des sons plus «aigus», caractérisés par davantage de tons
élevés que ceux employés jusqu’à présent de forme «triangulaire». Mais
le choix de la forme n’est qu’une des possibilités à disposition pour
définir le caractère du son. Nous pouvons également modifier le taux
d’appui/relâchement pour passer du son d’un clavecin à un son de
«banjo». C’est la commande POKE dans la ligne 40 qui en est responsa­
ble:

POKE A,3

85

Comme vous venez de le voir, vous pouvez obtenir des sons identiques
à ceux de différents instruments de musique - comme par un véritable
synthétiseur. Comment faire, c ’est-à-dire comment modifier les re­
gistres, vous en trouverez les détails ci-après.

RÉGLAGES IMPORTANTS DE LA TONALITÉ
1. Volume du son - Le choix du volume concerne tous les 3 générateurs

de sons du COMMODORE 64. Le registre en question lit l’adresse 54296.
Vous obtenez le volume maximal quand vous mettez (poke) dans le
registre le chiffre 15:

POKE L, 15 ou POKE 54296,15

Pour éteindre les générateurs de sons, vous écrivez 0 dans le registre:

POKE L,0 ou POKE 54296,0

En principe, vous fixez le volume du son au début d’un programme de
musique; mais vous pouvez aussi créer des effets intéressants grâce à
des modifications de programmation du volume du son.

2. Forme d’ondes - Comme vous venez de le constater dans notre
exemple, les formes d’ondes définissent en large mesure le caractère du
son. Pour chaque voix du COMMODORE 64, vous pouvez régler les
formes indépendamment.
Pour ce faire, vous avez le choix entre la forme triangulaire, dent de scie,
rectangulaire (impulsion) et bruit. Vous trouverez les adresses respecti­
ves et leurs contenus qui correspondent aux différentes voix et formes
d’ondes dans la liste ci-dessous. Si vous désirez p. e. choisir la forme «tri­
angulaire» pour la première voix, vous devez entrer la commande sui­
vante:

POKE W,17 ou POKE 54276,17

Le premier chiffre (adresse) représente alors le registre et le second
(contenu de l’adresse ou du registre) détermine la forme respective.

REGLAGES DES FORMES D ONDES
REGISTRE CONTENU

VOIX 1 2 3
BRUIT RECTANGLE DENT DE SCIE TRIANGLE

4 11 18 129 65 33 17

Nous avons utilisé ce tableau dans la ligne 30 de notre programme sur
la gamme de sons. Moyennant Poke SI+4,17, nous avons sélectionné la

8 6

forme triangulaire que nous avons remplacée en modifiant le caractère
du son par une «dent de scie» en changeant le 17 en 33.

Maintenant, voyons comment modifier la courbe enveloppante qui
définit le développement du volume dans le cadre du son même.
Pensez-y, un son est seulement produit si vous déterminez, comme
expliqué ci-dessus, son volume et sa forme.

3. Réglage de la courbe enveloppante - Les valeurs d’appui/relâche­
ment qui peuvent être choisies, comme dans la forme d’ondes, pour
chaque voix séparément, sont représentées ensemble par une valeur
numérique. Tandis que le paramètre d’appui indique le temps au cours
duquel le son monte jusqu’à son volume maximal (réglé d’avance), le
paramètre de relâchement mesure la vitesse à laquelle le volume du son
descend jusqu’au niveau d ’arrêt. Si le niveau d’arrêt 0 a été choisi, le
paramètre de relâchement indique la durée de descente jusqu’au volume
0 pour ainsi définir la durée du son. Les adresses correspondant aux
différentes voix ainsi que les valeurs sélectionnées des taux d’appui/
relâchement sont additionnées et la somme ainsi obtenue est mise
(poke) dans le registre concerné.

REGLAGES DES TAUX D’APPUI/RELÂCHEMENT
REGISTRE CONTENU

VOIX 1 2 3 APPUI RELÂCHEMENT

5 12 19 15*16 (doux) ...0*16 (dure) 15 (d o u x)... 0 (dure)

Si vous réglez un seul taux d’appui, p. e. en mettant (POKE) 54277,64,
le taux de relâchement est automatiquement nul (et vice versa). Par
POKE 54277,66, l’appui est réglé sur un taux moyen (64=4*16) et le
relâchement sur une basse valeur (2), la valeur 66 représente donc la
somme de 64 et 2. Il est plus facile de reconnaître les différents éléments
quand l’on se sert de POKE A,4*16+2 (à condition que le registre
d’adresse A soit défini auparavant) au lieu de l’expression POKE 54277,66.

Maintenant, un programme-type vous illustrera mieux cet effet.
Frappez le mot NEW, appuyez sur la touche et entrez le pro­
gramme suivant:

10 REM PROGRAMM A EXPERIMENTER
20 Sl = 54272: FL=SI: FH = SI + 1: TL=SI+2:

TH= SI+3: W=SI+4: A=SI+5: H = SI+6:
L= SI+24

30 PRINT“PRESSEZ UNE TOUCHE!“ Message du programme

40 G ETZ$: I FZ$= “ ”TH E N40 Avez-vous appuyé sur la touche?

87

50 POKE L,15
60 POKE A,1*16+5
70 POKE H,0*16+0
80 POKE TH,8: POKE TL,0
90 POKE FH,14: POKE FL,162

100 POKE W,17
110 FO RT = 1TO200: N EXT
120 POKE W,0
130 GOTO40

Volume du son

Taux d’appui/relâchement

Maintien et résonance

Taux d’impulsions

Fréquence

Forme d’ondes, allumez le générateur

Durée du son

Eteindre le générateur

Recommencez le tout

Nous avons utilisé la voix 1 pour créer un son d’une courte montée et
d ’une courte descente après avoir atteint le volume maximal (ligne 60!).
Le résultat ressemble à peu près au rebondissement d’une balle dans un
fût d ’essence. Pour obtenir un autre son, nous modifions cette ligne.

Nous arrêtons alors le programme par£Q3BQ, faisons afficher le pro­
gramme par LIST (en appuyant ensuite sur la to u ch e |Q Q 2 |) et change­
ons la ligne 60 de la manière suivante:

60 POKE A,11*16+14

L’ordinateur reprendra cette ligne modifiée dans sa mémoire dès que
la touche est frappée.

Le son ainsi obtenu fait penser aux hautbois ou tout autre instrument
de type flûte. Faites des essais tout en changeant la forme et la courbe
enveloppante pour avoir comment les différentes valeurs de ces para­
mètres modifient le caractère du son.

Le réglage du maintien détermine le volume du son qui est conservé
après l’appui. Comme d’habitude, nous nous servons d ’une boucle
FOR . . . NEXT pour régler la durée du son. Tout comme avant dans le
registre précédent, le maintien et la résonance du son sont définis par un
chiffre qui est le résultat de l’addition des valeurs figurant dans la liste ci-
dessous:

MAINTIEN/RESONANCE
REGISTRE CONTENU

VOIX 1 2 3 MAINTIEN RÉSONANCE

6 13 20 15*16 (fo r t) ... 0*16 (muet) 15 (le n t)... 0 (rapide)

Remplacez les zéros dans la ligne 70 par n’importe quelle valeur
jusqu’à 15 au maximum et écoutez le résultat!

88

4. Le choix des voix et des notes - Comme déjà mentionné, il faut
entrer deux valeurs pour créer un son que nous avons appelées «haute»
et «basse» fréquence. L’attribution de ces valeurs notes ressort du
tableau de l’annexe P.
Etant donné que les voix sont affectées à différentes adresses (voir
tableau ci-après), vous pouvez programmer indépendamment les trois
voix de votre COMMODORE 64 et créer ainsi p. e. des pièces de musique
à 3 voix.

ADRESSES DES TROIS GENERATEURS DE SONS ET LES VALEURS
POKE HAUTE ET BASSE FREQUENCE DES SONS DE L OCTAVE

MOYENNE (5 e)
REGISTRE CONTENUS POUR LES NOTES - 5 E OCTAVE

VOIX 1 2 3 C C # D D# E F F# G G# A# H# H C

HAUTE-FREQ. 1 8 15 35 37 39 41 44 46 49 52 55 58 62 66 70

BASSE FREQ. 0 7 14 3 24 77 163 29 188 132 117 148 226 98 24 6

Pour créer un do (C) avec la voix 1, vous devez employer les com­
mandes POKE suivantes:

POKE 54273,35:POKE 54272,3
ou POKE SI+1,35:POKE SI,3

Le même son avec la voix 2 est créé par:

POKE 54280,35:POKE 54279,3
ou POKE SI+8,35:POKE SI+7,3

JOUER UNE CHANSON SUR LE COMMODORE 64
Le programme suivant permet de «composer» ou de jouer une

chanson. L’ordinateur se sert de la voix 1. Notez que dans la ligne 110 du
programme, les adresses des registres souvent utilisés sont attribuées à
des variables numériques ce qui facilite leur application. Si p. e. la forme
d’ondes est choisie, il suffit de remplacer dans la commande POKE
correspondante le chiffre 54276 par la lettre W.

De même, notez la façon dont les lignes DATA sont utilisées. Ceci pour
vous faciliter dorénavant leur emploi dans vos propres programmes.

Le présent programme mémorise successivement dans les lignes
DATA les trois chiffres nécessaires’pour décrire un certain son. Il s’agit
de la haute et basse fréquence ainsi que de la durée du son.

89

La durée du son est déterminée par une boucle de 1 jusqu’à la troisième
position des lignes DATA. 125 correspond alors à une croche, 250 à une
noire, 375 à une noir avec point, 500 à une blanche et 1000 à une ronde.
Selon le rythmeou votregoûten matière de musique, ces valeurs peuvent
être augmentées ou diminuées.

Prenons le ligne 110, le 17 et le 103 représentent la haute et basse fré­
quence pour le do (C) et du chiffre 250 à la troisième position résulte une
noire. La seconde note est aussi une noire, mais cette fois le mi (E) etc.
M'est également possible d’introduire dans les lignes DATA des valeurs
choisies par vous-mêmes dans la liste des notes de l’annexe P. La
longueur de votre mélodie n’est limitée que par l’emplacement de
mémoire disponible dans votre COMMODORE 64. Il suffit de veiller à ce
que l’expression DATA-1,-1,-1 figure dans la dernière ligne du pro­
gramme. Puis, la ligne 130 achève le programme quand il a atteint cette
ligne.

10 REM MICHREL R0U THE B0RT RSH0RE
20 S1=54272:FL=SI:FH=SI+1:TL=SI+2:TH=SI+3:U=SI+4:R=SI+5:H=SI+6:L=SI+24
30 PÜKEL,15 :P0KETH,13 :P0KETL,15 : POKER,3*16+5 :P0KEH,9
40 REflDX : RERDV '• RERDD
50 IFX=-1THENEND
60 P0KEFH,X :PQKEFL,V
70 PÜKEW,65
80 F0RT=1T0D=NEXT
90 PÜKEW,0
100 GOTO40
110 BRTR17,103,250,21,237,250,26,20,400,21,237,100,26,20,250,29,69,250
120 BRTR26,20 .= 250,0,0. 25?, 21,237,250,26,20,250,29,69,1000,26,20,250,0,0,250
130 IiRT.R-1 ,-1,0

CRÉATION D’EFFETS SONORES
Contrairement aux effets musicaux, les effets purement sonores

soulignent généralement les «actions» qui se passent sur l’écran
(l’explosion d ’un vaisseau spatial etc.) ou ils doivent informer ou prévenir
l’utilisateur d’un programme (p. e. qu’il est sur le point d’effacer sa dis­
quette etc.).
Voici quelques exemples pour faire des essais:

1. Modifiez le volume du son pendant qu’une note est jouée, vous pou­
vez par exemple produire ainsi l’effet d’écho.

2. Faites des «sauts» rapides entre deux hauteurs de sons pour créer un
«trémolo».

3. Essayez différentes formes d’ondes.
4. Analysez les détails de la courbe enveloppante.

90

5. Grâce à la programmation variable des trois voix (p. e. faire durer le
son d ’une certaine un peu plus longtemps que celui d’une autre voix)
des effets sonores étonnants sont possibles.

6. Employez la forme rectangulaire (impulsion) et modifiez la gamme
d’impulsions (annexe O).

7. Essayez les générateurs de bruit pour créer des explosions, coups de
fusil ou pas etc.

8. Variez les hautes/basses fréquences selon une succession rapide sur
plusieurs octaves.

EXEMPLES D’EFFETS SONORES POUR LES DÉMON­
STRATIONS

Les programmes suivants peuvent être intégrés, tels quels ou étant
modifiés, dans n’importe quel programme BASIC. Ils sont inclus ici pour
vous inciter à faire vos propres essais et pour illustrer la gamme d’effets
sonores à disposition sur votre COMMODORE 64.

10 REM POUPEE
20 S1=54272 :FL=SI:FH=SI+1:TL=SI+2:TH=SI+3:W=SI+4:R=SI+5:H=SI+6:L=SI+24
30 POKEL .-15: POKETH ,15: PQKETI ,15: POKER, 9* 16+0 : PQKEH ,15*16
40 PGKEl-i, 65
50 îrORX=250TO0STEP-2 : POKEFH, 40 : POKEFL, X : NEXT
60 F0RX=150TO0STEP-4:POKEFH,40 :POKEFL,X :NEXT
70 POKEU,0

10 REM COUP DE FEU
20 S 1=54272 : FL=SI : FH=SI + 1 '• TL=SI+2 : TH=SI+3 : W=SI+4 :R=SI+5 : H=SI+6 : L=SI+24
30 F0RX=15TO0STEP-1
40 POKEL,X : POKER,15:POKEH,0 :POKEFH,40:POKEFL,200 :POKEW, 129
50 NEXT
60 POKEW,0:POKER,0

10 REM M0TEIJRS
20 81=54272
39 F0RK=9T024:RERDX:POKESI+K,X:NEXT
40 DRTR9,2,0,3,0,0,240
50 DRTR12,2,0,4,0,0,192
60 DRTR16,2,0,6,0,0,64
70 DRTR0,30,243,31:REM FILTRE
30 POKESI+4,65:POKES1+11.65:POKES1+18,65

91

CHAPITRE

TRAITEMENT
AVANCE DES DONNEES

• READ et DATA
• Moyennes
• Variables à indices

Tableaux à une entrée
• DIMENSION
• Jets de dés simulés
• Tableaux à deux entrées

93

READ ET DATA
Vous avez vu comment assigner des valeurs à des variables directe­

ment à l’intérieur du programme (A=2) et comment assigner différentes
valeurs pendant que le programme est en cours- par l’instruction INPUT.
Il se présente de nombreux cas où ni l’une, ni l’autre de ces façons ne
s’adapte parfaitement au travail que vous essayez de réaliser, en parti­
culier s’il relie un grand nombre d’informations.

Essayez ce court programme:

10 RERDX
20 PRINT"* EST MRINTENRNT :" ;X
30 GOTO10 .
40 DRTR 1 ,3 4 ,1 0 .5 ,1 6 ,2 3 4 .5 6

PUH

X I S NOW 1
X IS NOW 34*
X I S NOW 1 0 . 5
X IS NOW 16
X I S NOW 2 3 4 . 5 6

'OUT OF DHTh FF'Ru P IN 10
RF ROY
■

A la ligne 10, l’ordinateur lit (READ) une valeur de l’instruction DATA et
assigne cette valeur à X. Chaque fois, dans la boucle, la valeur suivante
de l’instruction DATA est lue et cette valeur est assignée à X et affichée
(PRINT). Un pointeur de l’ordinateur conserve automatiquement la trace
de la valeur qui est utilisée plus tard.

j POINTEUR

40 DATA 1, 34, 10.5, 16, 234.56

Lorsque toutes les valeurs ont été utilisées et que l’ordinateur a de
nouveau exécuté la boucle, en cherchant une autre valeur, l’erreur OUT
OF DATA (hors des données) a été affichée parce qu’il n’y avait plus de
valeurs à lire (READ).

Il est important de suivre précisément le format de l’instruction DATA:

40 DATA 1, 34, 10.5, 16, 234,56
î î

Virgule qui sépare Pas de virgule
chaque position

94

Les instructions DATA peuvent contenir des nombres entiers, des
nombres réels (234,65), ou des nombres exprimés en notation scienti­
fique. Mais vous ne pouvez lire d’autres variables ou prévoir des opéra­
tions arithmétiques dans les lignes DATA. Ceci serait incorrect:

40 DATA A, 23/56,2*5

Cependant, vous pouvez utiliser une variable chaîne dans une instruc­
tion READ (lecture) et ensuite placer l’information chaîne dans la ligne
DATA. Le programme ci-dessous est acceptable:

NEW

10 FORX = 1 TO 3
15 READ A$
20 PRINT "A$ EST MAINTENANT : " : R$
30 NEXT
40 DATA CELA, EST .. AMUSANT

RUN

H* IS NON THIS
HT IS NON IS
HT IS NON FUN
RERDV

Notez que cette fois l’instruction READ a été placée à l’intérieur d ’une
boucle FOR ... NEXT. Cette boucle a ensuite été exécutée pour adapter le
nombre des valeurs dans l’instruction DATA.

Dans de nombreux cas, vous devez modifier le nombre des valeurs
dans l’instruction DATA chaque fois que le programme est passé. Une
façon d’éviter de compter le nombre des valeurs et d’éviter également un
message d’erreur OUT OF DATA ERROR consiste à placer un «drapeau»
(FLAG) comme dernière valeur dans la ligne DATA. Ceci peut être une
valeur que vos données ne prendraient jamais, comme par exemple un
nombre négatif ou un nombre très petit ou très grand. Lorsque cette
valeur est lue, le programme se branche sur la partie suivante.

Il existe une façon de réutiliser la même donnée plus tard dans le pro­
gramme en réinitialisant (RESTORE) le pointeur de données au début
de la liste des données. Ajoutez la ligne 50 au programme précédent:

50 GOTO 10

Vous continuerez à obtenir le message d’erreur OUT OF DATA parce
que lorsque le programme se rebranche sur la ligne 10 pour relire les

95

données, le pointeur de données indique que toutes les données ont été
utilisée. A présent, ajoutez:

45 RESTORE

et faites à nouveau passer le programme. Le pointeur de données a été
RESTOREd (réinitialisé) et les données peuvent être lues sans inter­
ruption.

MOYENNES
Le programme ci-dessous illustre une utilisation pratique de READ et

DATA par la lecture d’un jeu de nombres et le calcul de leur moyenne.

NEL'

5 7=0■CT=0
10 RERB X
20 IF X=-l THEN 50:REM TEST
25 CT=CT+1
30 T=T+X:REM CflLCUL DE LR SOMME
40 GOTO 10
50 PRINT CT "VRLEURS ONT ETE LUES"
60 PRINT "SOMME ="JT
70 PRINT "MOVENNE =",T/CT
80 BRTR 75,80,62,91,87,93,78,-1

RUN
THERE HERE 7 V R LU ES EERO
10TRL = 5 6 *
HVE RRUE Ù . ‘- ‘ ^ 7 1 4 u-!r*

La ligne 5 met CT, le CompTeur, et T le total égal à zéro. La ligne 10 lit
une valeur et assigne la valeur à X. La ligne 20 contrôle pour vérifier si la
valeur est notre drapeau (ici A - 1). Si la valeur lue fait partie des données
valides, CT est avancé de 1 et X est ajouté au total.

Lorsque le drapeau est lu, le programme se branche sur la ligne 50 qui
affiche le nombre des valeurs lues. La ligne 60 affiche le total et la ligne 70
divise le total par le nombre des valeurs pour obtenir la moyenne. En utili­
sant un drapeau à la fin de DATA, vous pouvez placer n’importe quel
nombre de valeurs dans les instructions DATA-qui peuvent s’étendre sur
plusieurs lignes - sans vous préoccuper du comptage du nombre des
valeurs entrées.

Une autre variation de l’instruction READ fait appel à l’affectation d’in­

96

formations provenant de la même ligne DATA à des variables différentes.
Ces informations peuvent même être un mélange d’une chaîne de
données et de valeurs numériques. Vous pouvez réaliser toutes ces opé­
rations dans le programme suivant qui lira un nom, certains scores
- disons le bowling - et affichera le nom, les scores et le score moyen:

NEW

10 READ N$,A,B,C
20 PRINT "LES POINTS DE "N$;M SONT B;" ";C
30 PRINT "ET LA MOVENNE EST :M;<fi+B+CV3
40 PRINT:GOTO 10
50 DflTfi MIKE, 190, 185, 165, DICK, 225, 245, 190
60 BATR JOHN, 155, 185, 205, PAUL, 160, 179, 187
RUN

M IK E /S SCORES WERE: ISO ISO 165
AND THE AVERAGE IS : J SO

D I C K 'S SCORES WERE: 2 2 5 2 4 5 ISO
AND THE AVERAGE I s : 2 2 0

Lors du passage du programme, les instructions DATA ont été établies
dans le mêmeordreque l’instruction READ, misesàpart les informations:
un nom (une chaîne), ensuite trois valeurs. En d’autres termes, N$ passé
pour la première fois obtient les données de MIKE (DATA MIKE), A dans
READ correspond à 190 dans l’instruction DATA, B à 185 et C à 165. Le
processus est alors répété dans l’ordre pour le reste des informations.
(Dick et ses scores, John et ses scores, et Paul et ses scores).

VARIABLES A INDICES
Auparavant, nous avons uniquement utilisé de simples variables

BASIC, telles que A, A$, NU pour représenter des valeurs. Il s’agissait
d ’une seule lettre suivie d’une lettre ou d’un seul chiffre.

Il est douteux que dans tous les programmes que vous pourriez rédi­
ger, nous ayons besoin de plus de noms de variables que possible avec
toutes les combinaisons de lettres et de chiffres disponibles. Mais vous
êtes limités par le fait que les variables sont utilisées ensemble avec les
programmes.

A présent, introduisons le concept de variables à indices.

A(1) <- INDICE
^ --------- VARIABLE

97

C’est lu: A indice 1. Une variable à indice est constituée d’une lettre
suivie d’un indice entre parenthèses. Veuillez noter la différence entre A,
Al et A(1). Chacun est différent. Seul A(1) est une variable à indice.

Les variables à indices, tout comme les variables simples, désignent un
emplacement de la mémoire à l’intérieur de l’ordinateur. Imaginez les
variables à indices comme des cases pour mémoriser des informations,
tout comme les variables simples:

Si vous avez écrit:

A(0) = 25:A(3) = 55:A(4) = -45.3

alors le mémoire aura l’aspect suivant:

Ce groupe de variables à indices est également appelé un tableau.
Dans ce cas, un tableau à une entrée. PAR la suite, nous introduirons
les tableaux à plusieurs entrées.

Les indices peuvent également être plus complexes pour compendre
d’autres variables ou calculs. Les notations suivantes sont des variables
à indices valides:

A(X) A(X+1) A(2+1) A(5*3)

Les expressions à l’intérieur des parenthèses sont évaluées suivant les
mêmes règles que les opérations arithmétiques décrites chapitre 2.

A présent que les règles de base ont été établies, comment les variables
à indices peuvent-elles être utilisées? Un moyen consiste à mémoriser
une liste des nombres entrés avec les instructions INPUT ou READ.
Utilisons les variables à indices pour obtenir les moyennes d’une autre
façon.

98

5 PRINTCHR$<147)
10 INPUT "COMBIEN DE CHIFFRES :"JX
20 FOR RS1 TO X
30 PRINT "VALEUR#"; R; = INPUT BCR)
40 NEXT
50 SU=0
60 FOR A=1 TO X
70 SU=SU+B(A>
SO NEXT
98 PRINT:PRINT "VALEUR MOVENNE = 'N SU/X

R UN

HOW MH'NV ’ NUMBER5 : ? 5
EN TER V A LU E # 1 ? 125
ENTER V ALU E # 2 ? 167
ENTER V ALU E # 3 ? 183
ENTER V A LU E # 4 ? 167
EN TER V ALU E # 5 ? 153

HVERHüE = 1 6 1 - 2

Il y avait une voie plus simple pour réaliser ce que nous avons fait dans
ce programme, mais ainsi la façon dont fonctionnent les variables à
indices est mieux démontrée.

La ligne 10demande combien de nombres serontentrés. Cette variable
X agit comme compteur de la boucle à l’intérieur de laquelle des valeurs
sont entrées et assignées à la variable à indice B.
A chaque passage de la boucle d’entrée, A est augmenté de 1 et la valeur
suivante qui est entrée est assignée au prochain élément, tableau A. Par
exemple lors du premier passage la boucle A = 1, si bien que la première
valeur entrée est assignée à B(1). Au passage suivant A = 2, la valeur
suivante est assignée à B(2), ainsi de suite jusqu’à ce que toutes les
valeurs aient été entrées.

Mais à présent, une grande différence entre en jeu. Une fois que toutes
les valeurs ont été entrées, elles sont mémorisées dans le tableau, prêtes
à être employées dans un grand nombre de variétés. Avant, vous obtenez
le total de chaque passage de la boucle INPUT ou READ, mais sans pou­
voir revenir aux éléments individuels des données sans avoir relu les in­
formations.
Une autre boucle a été conçue avec les lignes 50 à 80 pour ajouter les
différents éléments du tableau et afficher la moyenne. Cette partie sé­
parée du programme indique que toutes les valeurs sont mémorisées
et peuvent être obtenues selon les besoins.

99

Pour démontrer que la totalité des différentes valeurs sont effective­
ment séparément mémorisées dans un tableau, frappez ce qui suit immé­
diatement après avoir passé le programme précédent:

FOR A = 1 TO 5 : ? B(A),: N EXT

L’écran indique vos valeurs effectives et les contenus du tableau sont
affichés.

DIMENSION
Si vous essayez d ’entrer plus de 10 nombres dans l’exemple précédent,

vous obtenez une erreur de dimension. Les tableaux jusqu’à 11 éléments
(indices 0 à 10 pour un tableau à une entrée) peuvent être utilisés si c’est
nécessaire tout comme les variables simples peuvent être utilisées où
que ce soit à l’intérieur d’un programme. Les tableaux de plus de 11
éléments ont besoin d’être «déclarés» dans une instruction de dimen­
sion.

Ajoutez cette ligne au programme:

5 DIM B(100)

Elle fait savoir à l’ordinateur que vous aurez au maximum 100 éléments
dans le tableau.

L’instruction de dimension peut également être utilisée avec une
variable si bien que la ligne suivante paut remplacer la ligne 5 (ne pas
oublier d’éliminer la ligne 5):

15 DIM B(X)

Ceci dimensionnera le tableau avec le nombre exact de valeurs qui
sera entré.

Soyez prudent. Une fois dimensionné, un tableau ne peut être re­
dimensionné dans une autre partie du programme. Cependant, vous
pouvez avoir de multiples tableaux à l’intérieur d’un programme et alors
les dimensionner tous de la même façon comme ceci:

10 DIM C(29), D(50), E(40)

JETS DE DES SIMULES
Au fur et à mesure que les programmes deviennent plus complexes,

l’utilisation de variables à indices réduit le nombre des instructions
nécessaires et rend le programme plus simple à rédiger. Une seule

100

variable à indices peut être utilisée par exemple pour conserver le nom­
bre de fois qu’une face particulière apparaît:

1 REM SIMULATION DE
2 PRINT CHR$<147)
10 INPUT "COMBIEN DE JETS ".¡X
20 FÜR L=1 TO X
30 R*INT<6*RNDa)) + l
40 F(R)-F<R)+1
50 NEXT L
60 PRIHT"JET" j "NOMBRE DES JETS"
70 FOR C=1 TÜ 6: PR I NTC •• F < C): NEXT

Le tableau F, pour FACE, sera utilisé pour conserver le nombre de fois
qu’une face particulière apparaît. Par exemple, chaque fois que 2 est
sorti, F(2) est augmenté de 1. En utilisant le même élément de la ligne
pour conserver le nombre effectif sur la face qui apparaît, nous avons
évité d’avoir besoin de 5 autres variables (une pour chaque face) et éli­
miné les instructions numériques pour contrôler et voir quel chiffre est
sorti. La ligne 10 demande combien de jets vous souhaitez simuler.

La ligne 20 établit la boucle pour réaliser le jet aléatoire et augmenter
l’elément adéquat du tableau position lors de chaque jet.

Après que tous les jets exigés ont été réalisés, la ligne 60 affiche l’entête
et la ligne 70 affiche le nombre de fois que chaque face sort.

Un exemple de passage peut avoir cet aspect:

HÜW NHNV R O L L S : ''■ ÎOOO
F R CE. NIJMBER ÜF R O LLS
1 148
3 1 76
3 1 78
4 1 66
C=- 163
6 169

Parfait, au moins il n’était pas chargé!
Juste une comparaison, vous trouverez ci-dessous une façon de

rédiger de nouveau le même programme, mais sans utiliser les variables
à indices. Ne vous fatiguez pas pour les frapper, mais notez les instruc­
tions supplémentaires nécessaires.

10 INPUT "COMBIEN DE JETS ";X
20 FOR 1=1 TO X
30 R=I NT C 6#RND < 1)) +1.
40 IFR=1THENF1=F1 +1 :NEXT
41 IFR=2THENF2=F2+1 :NEXT
42 IFR=3THENF3=F3+1:NEXT
43 IFR=4THENF4=F4+1:NEXT

101

44 IFR=5THENF5=F5+1 :NEXT
45 IFR*6THENF6*F6+l:NEXT
60 PRINT"JETS"/'NOMBRE EES JETS”
70 PRINT 1;Fl
71 PRINT 2,F2
72 PRINT 3,F3
73 PRINT 4,F4
74 PRINT 5,F5
75 PRINT 6,F6

Le programme a été doublé en dimension de 8 à 16 lignes. Dans les
plus vastes programmes, les économies d’espace résultant de l’utili­
sation de variables à indices, seront encore plus importantes.

TABLEAU A DEUX ENTREES
Vous avez essayé les tableaux à une entrée au début de ce chapitre. Ce

type de tableau a été visualisé sous la forme d’un groupe de cases con­
sécutives dans la mémoire, chacune contenant un élément du tableau.
A quoi, pensez-vous, ressemble un tableau à deux entrées?

En premier lieu, un tableau à deux entrées doit être écrit comme suit:
A(4,6)

NOM DU TABLEAU ^ INDICES

et peut être imaginé sous la forme d’une grille à deux dimensions à
l’intérieur de la mémoire:

Les indices pourraient représenter la ligne et la colonne à l’intérieur du
tableau où l’élément particulier de la ligne est mémorisé.

A(3,4) = 255
t t

LIGNE I COLONNE

((> 1 2 3 4 5 6
♦
1
2
3
4

255

102

Si nous assignons la valeur 255 à A(3,4), alors 255 doit être considéré
comme étant placé dans la quatrième colonne de la troisième du tableau.
Les tableaux à deux entrées suivent les mêmes règles que celles établies
pour les tableaux à une entrée:

Ils doivent être dimensionnés: DIM A(20,20)
Affectation des données: A(1,1) = 255
Affectation des valeurs à d’autres variables: AB = A(1,1)
Affichage des valeurs: PRINT A(1,1)

Si les tableaux à deux entrées fonctionnent comme leur contre-partie
plus petite, quelles sont les possibilités supplémentaires qu’ils offrent?

Essayez ceci: Imaginez une manière d’utiliser un tableau à deux
entrées pour tabuler les résultats d’un questionnaire pour votre club qui
comprend 4 questions, et prévoit 3 réponses pour chaque question. Le
problème peut se présenter comme suit:

QUESTIONNAIRE DE CLUB

Q1 : FAVORISEZ-VOUS LA RESOLUTION 1?

□ 1 = OUI D 2 = NON D 3 = ABSTENTION ...e tc .

Le tableau de ce problème peut être représente comme ceci:

QUESTION
QUESTION
QUESTION
QUESTION

OUI
REPONSES

NON ABSTENTION

Le programme, pour réaliser le calcul effectif du questionnaire, peut
ressembler à celui représenté page 103. Ce programme fait appel à beau­
coup de techniques de programmation présentées jusqu’à présent.
Même si vous n’avez pas besoin du programme à l’instant même, vérifiez
pour savoir si vous pouvez suivre le fonctionnement du programme.

Le coeur de ce programme est un tableau à deux entrées de 4 x 3, A(4,3).
Les totaux des réponses de chaque réponse possible à chaque question
sont conservés dans l’élément approprié du tableau. Pour plus de simpli­
cité, nous n’avons pas utilisé les premières lignes et colonnes (A(0,0) à
A(0,4). Rappelez-vous que ces éléments sont toujours présents dans
n’importe quel tableau que vous concevez.

Dans la pratique, si l’on répond par oui à la question 1, alors A(1,1) est
avancé de 1 - ligne 1 pour la question 1 et colonne 1 pour la réponse oui.

103

Le reste des questions et des réponses suit le même schéma. Une ré­
ponse négative à la question 3 ajouterait 1 à l’élément A (3,2) et ainsi de
suite.

20 PR INT "T :REM TOUCHE SHIFT+CLR
30 FOR R=1 TO 4
40 PRINT"OUESTION NO :";R
50 PRINT "1-OUI 2-NON 3-NON DECIDE"
60 PRINT "QUELLE EST Lfi REPONSE:
61 GET C: IF COI OR 0 3 THEN 61
65 PRINT C:PRINT
70 fl(R,C)*fl<R,C)+l
80 NEXT R
85 PRINT
90 PRINT "VOULEZ-VOUS ENTRER UNE NOUVELLE REPONSE?

" : PRINT"REPONSE (0/N)"
100 GET PS: IF R$=""THEN 100
110 IP R$="0"THEN 20
120 IF R$0"N"THEN 100
130 PRINT" CLES REPONSES EN TOTRL SONT: " :PRINT
140 PRINT SPC a 8 "REPONSE"
141 PR INT "QUEST ION".. "OUI", "NON NON DECIDE"
142 PRINT"--------------- --"
150 FOR R=1 TO 4
160 PRINT R,R(R.- i ; RiR.: 2> - FKR. 3)
170 NEXT R
RUN

QUESTION # : 1
1—VES 2—NO 3-UNDECIDED
WHRT WRS THE RESPONSE : 1

QUESTION # : 2
1—VES 2-NO 3-UNDECIDED
WHRT WRS THE RESPONSE : 1

Rnd so on. . .

THE TOTRL RESPONSES WERE s

QUESTION VES
RESPONSE

NO UNDECIDED

1 6 1 0
2 5 2 0
3 -? 0 0
4 2 4 1

104

ANNEXES

105

INTRODUCTION

A présent que vous vous êtes familiarisé avec votre COMMODORE 64,
nous souhaiterions que vous sachiez que notre service après-vente ne
s’arrête pas là. Vous pouvez ne pas le savoir, mais Commodore existe
depuis plus de 23 ans. Nous avons introduit, en 1970, le premier ordina­
teur personnel autonome (le PET). Depuis cette date, nous sommes de­
venus le principal fabricant d’ordinateurs dans de nombreux pays du
monde. Nos possibilités de conception et de fabrication de nos propres
puces d’ordinateur nous permettent de vous fournir de nouveaux et de
meilleurs ordinateurs personnels à des prix inattendus vu le niveau de
perfectionnement technique. Commodore s’engage à soutenir non seu­
lement vous-même, vous qui êtes l’utilisateur final, mais également le
revendeur auprès duquel vous avez acheté votre ordinateur ainsi que
les magazines qui publient des articles pratiques vous présentant de
nouvelles applications techniques, et aussi les maisons software qui pro­
duisent des programmes enfichables dans les disques ou bandes
destinés à votre ordinateur. Nous vous encourageons à fonder ou à
adhérer à un club d’utilisateurs Commodore où vous pourrez apprendre
de nouvelles techniques, échanger des idées et partager vos découvertes.
Nous publions deux magazines séparés qui contiennent des conseils de
programmation, des informations sur les nouveaux produits et des idées
pour les applications informatiques (voir annexe N).

En Amérique du Nord, Commodore met à disposition un réseau d’in­
formations Commodore par le service d’informations CompuServe . . .
pour accéder à ce réseau, il vous suffit de disposer de votre ordinateur
COMMODORE 64 et du chargeur d’interface téléphonique avantageux
VICMODEM (ou d’un autre modem compatible).

Les annexes suivantes contiennent des diagrammes, des tableaux et
d’autres informations qui vous aident à programmer votre COMMODO­
RE 64 plus rapidement et plus efficacement. Elles comprennent égale­
ment des informations importantes sur la grande variété des produits
Commodore qui peuvent vous intéresser ainsi qu’une bibliographie,
une liste de plus de 20 livres et magazines qui vous aident à développer
vos facultés de programmation et à vous tenir au courant des dernières
informations relatives à votre ordinateur et ses périphériques.

106

ANNEXE A

ACCESSOIRES DU COMMODORE 64
ET SOFTWARE

ACCESSOIRES

Le COMMODORE 64 peut recevoir les accessoires et périphériques
de stockage du Commodore VIC 20 soit lecteur-enregistreur DATAS-
SETTE, entraîneur de disque, modem, imprimante, si bien que votre sy­
stème peut être étendu en fonction de vos besoins croissants.

• Lecteur-enregistreur Datassette - Cette unité avantageuse à ban­
de permet de mémoriser les programmes et données sur une ban­
de de cassette et de les restituer à une date ultérieure. Le Datas­
sette peut également être utilisé pour restituer des programmes
préenregistrés.

• Disque - La station de disquettes mono VC 1541 utilise des dis­
quettes standards de 5 1/4" pour mémoriser des programmes et
des données. La station permet un accès plus rapide aux données
et conserve jusqu’à 170.000 caractères d’informations sur chaque
disquette. Les stations de disquettes sont «intelligentes», ce qui
signifie qu’elles disposent de leur propre microprocesseur et mé­
moire. Elles n’occupent pas de place dans la mémoire de l’ordina­
teur.

• Imprimante - L’imprimante VC 1525 fournit des exemplaires sur
papier des programmes, données ou graphiques. Cette impriman­
te à matrice de 30 caractères par seconde utilise du papier en con­
tinu normal et d’autres fournitures peu coûteuses.

• Modules d’interface - Un certain nombre de modules d’interface
spécialisés sont disponibles pour le COMMODORE 64 de manière
à permettre à différents périphériques standards, tels que mo­
dems, imprimantes, contrôleurs et instruments de mesure, d ’être
branchés au système.

107

Avec un module spécial IEEE-488, le COMMODORE 64 supporte la
gamme complète des périphériques CBM, y compris les stations de dis­
quettes et imprimantes. D’autre part, un carte Z80 vous permet d’utiliser
le CP/M* sur le COMMODORE 64, vous procurant un accès à la plus
grande base d’applications de micros-ordinateurs disponibles.

SOFTWARE
Plusieurs catégories de software sont offertes pour le COMMODORE

64, vous procurant une grande variété d’applications personnelles, de
distraction et d’éducation au choix.

AIDES COMMERCIALES

• Des programmes de feuilles d’enregistrement électronique vous
permet de planifier des budgets et de réaliser des analyses «que
faire si?». D’autre part, avec le programme graphique en option,
vous pouvez créer des graphiques éloquents à partir des données
des feuilles.

• La planification financière, telle que l’amortissement de prêts, se­
ra aisément traitée avec les programmes planification financière.

• Un certain nombre de programmes de gestion de temps profes­
sionnels facilitent la gestion de rendez-vous et du travail.

• Des programmes de base de données faciles à utiliser vous per­
mettent de retenir des informations . . . d ’établir des listes postales
. . . des listes de numéros de téléphone . . . des inventaires . . . et
d ’organiser les informations sous une forme utile.

• Les programmes de traitement de termes techniques font du
COMMODORE 64 un processeur de mots performant. La frappe et
la révision de mémos, de lettres et d ’autres textes deviennent un
plaisir.

DISTRACTION

• Des jeux de la plus haute qualité sont disponibles sur les program­
mes enfichables sur le COMMODORE 64 et procurent des heures
de distraction. Ces programmes font appel aux graphiques à hau­
te résolution et à la totalité de la gamme de sons réalisables avec
le COMMODORE 64.

* CP/M est une marque déposée de Digital Research Inc.

108

• Votre COMMODORE 64 vous fournit toute la joie et la distraction
possible grâce aux jeux MAX étant donné que ces deux machines
possèdent des chargeurs de programmes entièrement compati­
bles.

EDUCATION

• Le COMMODORE 64 est un précepteur qui ne se fatigue jamais et
qui est toujours attentif. A part d’accéder à la plupart des vastes
programmes d’éducation PET, le COMMODORE 64 met égale­
ment à disposition des langages d’éducation supplémentaires,
tels que PILOT, LOGO et d’autres programmes avancés impor­
tants.

109

ANNEXE 8

FONCTIONNEMENT
AVANCE A CASSETTE

En dehors de sauvegarder des copies de vos programmes sur ban­
des, le COMMODORE 64 peut également mémoriser des valeurs de va­
riables ou d’autres positions de données dans un groupe intitulé un fi­
chier (FILE). Ceci vous permet même de mémoriser plus d’informations
que ne peut en contenir en même temps la mémoire centrale de l’ordi­
nateur.

Les instructions utilisées avec les fichiers de données sont OPEN,
CLOSE, PRINT#, INPUT# et GET#. Le ST (état) variable du système est
utilisé pour contrôler les marqueurs de bande.

On utilise, pour l’enregistrement des données sur bandes, les mêmes
concepts que ceux pour l’affichage des informations sur l’écran de l’or­
dinateur. Mais, à la place d’afficher les informations sur l’écran, les in­
formations sont imprimées sur la bande en utilisant une modification de
l’instruction PRINT-PRINT#.

Le programme suivant illustre comment:

10 PRINT"ECRIRE SUR BANDE"
20 QPEN1,1,1.- "OUVRIR UN FICHIER"
30 PRINT"ENTREZ VOS DONNEES OU FRAPPEZ LE MOT STOP"
50 PRINT
60 INPUT"DATA".;fl$
70 PRINT#1,A#
80 I FA#C " STOP " THEN50
90 PRINT
100 PRINT"FERMETURE DU FICHIER"
110 CLOSE1

La première chose que vous avez à faire est d’ouvrir un fichier (dans
ce cas DATA FILE). La ligne 10 s’en occupe. Le programme suggère les
données que vous souhaitez sauvegarder sur la bande ligne 60. La ligne
70 enregistre ce que vous avez frappé - contenu dans A$ - sur la bande.
Et le processus continue.

Si vous frappez STOP, la ligne 110 ferme (CLOSE) le fichier. Pour res­
tituer les informations, rebobiner la bande et essayer ceci:

110

10 PRINT "RERD-TRPE-PROGRRM"
20 OPEN 1,1,0/"DfìTfì FILE"
30 PRINT "FILE OPEN"
40 PRINT
50 INPUT#lr R$
60 PRINT R$
70 IF fl$ = "STOP" THEN END
80 GUTU 40

A nouveau, le fichier «DATA FILE» doit d’abord être ouvert (OPEN). A
la ligne 50, le programme entre (INPUT) A$ à partir de la bande et affi­
che (PRINT) également A$ sur l’écran. Ensuite, tout le processus est ré­
pété jusqu’à ce que «STOP» soit trouvé, ce qui termine (END) le pro­
gramme.
Une modification de GET-GET# peut être également utilisée pour relire
les données à partir de la bande. Remplacer les lignes 50-80 du pro­
gramme ci-dessus avec:

50 GET# 1 .r fl$
60 IF = "" THEN END
70 PRINT R$.r RSC'CR$}
80 GOTO 50

111

ANNEXE C

BASIC COMMODORE 64
Ce manuel a été pour vous une introduction dans le langage BASIC -

suffisante pour avoir une idée de la programmation de l’ordinateur et
d’une partie du vocabulaire utilisé. Cette annexe vous fournit une liste
complète des règles (SYNTAXE) du BASIC COMMODORE 64 avec des
descriptions concises. Veuillez essayer ces instructions. Rappelez-vous
que vous ne pouvez endommager l’ordinateur en frappant simplement
des programmes et que la meilleure façon d’apprendre à l’utiliser est de
l’employer.

Cette annexe est divisée en sections selon les différents types d’opé­
rations en BASIC. Ceux-ci comprennent:

1. Les variables et opérateurs: Description des différents types de va­
riables, noms de variables légaux et opérateurs arithmétiques et lo­
giques.

2. Commandes: Description des commandes utilisées pour travailler
avec les programmes, les éditer, les mémoriser, les effacer.

3. Instructions: Description des instructions de programmation BASIC
utilisées dans les lignes numérotées des programmes.

4. Fonctions: Description des fonctions de chaîne, numériques et d’af­
fichage.

VARIABLES
Le COMMODORE 64 utilise trois types de variables en BASIC. Il s’agit

des variables numériques normales, numériques entières et de varia­
bles-chaînes (alphanumériques). Les noms des variables peuvent com­
prendre une seule lettre, une lettre suivie d’un nombre ou deux lettres.

Une variable entière est spécifiée par l’utilisation du signe pourcent
(%) après le nom de la variable. Les variables de chaînes possèdent le
symbole $ après leur nom.

EXEMPLES

Noms de variables normales: A, A5, BZ
Noms de variables entières: A%, A5%, BZ%
Noms de variables de chaînes: A$, A5$, BZ$

1 1 2

Les tableaux sont des listes de variables portant le même nom, utili­
sant des nombres supplémentaires pour spécifier l’élément du tableau.
Des tableaux sont définis en utilisant l’ instruction DIM et peuvent con­
tenir une virgule flottante, un nombre entier ou des variables-chaînes.
Le nom de la variable du tableau est suivi par un jeu de parenthèses ()
entourant le nombre de variables de la liste.

A(7),BZ%(11),A$(50),PT(20,20)

REMARQUE: Il existe trois noms de variables qui sont réservés au
Commodore 64 et qui ne peuvent être définis par vous. Ces variables
sont: ST, Tl et Tl$. ST est une variable d’état qui est en rapport avec les
opérations d’entrée/sortie. La valeur de ST se modifie s’il existe un pro­
blème de chargement d’un programme à partir d’un disque ou d’une
bande.

Tl et Tl$ sont des variables qui sont en rapport avec l’horloge en
temps réel incorporée dans le Commodore 64. La variable Tl est remise
à jour tous les 60èmes de seconde. Elle part à zéro lorsque l’ordinateur
est branché et elle n’est réinitialisée que par la modification de la valeur
de Tl$.

Tl$ est une chaîne qui est constamment mise à jour par le système.
Les deux premiers caractères contiennent le nombre des heures, les
3ème et 4ème caractères le nombre des minutes et les 5ème et 6ème
caractères sont le nombre des secondes. Cette variable peut recevoir
n’importe quelle valeur numérique et sera remise à jour à partir de ce
point.

Tl$ = «101530» règle l’horloge sur 10:15 et 30 secondes le matin.
Cette horloge est effacée lorsque l’ordinateur est arrêté et repart à zé­

ro lorsque le système est remis sous tension.

OPERATEURS

Les opérateurs arithmétiques comprennent les signes suivants:

+ Addition
- Soustraction
* Multiplication
/ Division
| Elévation à une puissance

Sur une ligne contenant plusieurs opérateurs, il existe un ordre déter­
miné selon lequel les opérations se déroulent toujours. Si plusieurs
opérations sont utilisées conjointement sur la même ligne, l’ordinateur

113

fixe les priorités comme suit: En premier lieu l’élévation à la puissance.
Ensuite multiplication et division et en dernier lieu addition et soustrac­
tion.

Vous pouvez modifier l’ordre des opérations en plaçant entre paren­
thèses le calcul à réaliser en premier lieu. Les opérations entre paren­
thèses ont lieu avant les autres opérations.

Il existe également des opérations d’égalité et d ’inégalité:

= Egal à
< Inférieur à
> Supérieur à
< = Inférieur à ou égal à
> = Supérieur à ou égal à
< > Différent de

Finalement, il existe trois opérateurs logiques:

AND ET (Deux conditions s’appliquent en même temps)
OR OU (Au moins une des conditions est exact)
NOT NE . . . PAS (La condition n’est pas exacte)

Ceux-ci sont très souvent utilisés pour associer les formules multi­
ples dans les instructions IF . . . THEN. Par exemple:

IFA = B AND C = D THEN (nécessite deux parties pour être vérifié)
IFA = B OR C = THEN 100 (autorise une partie ou l’autre pour être vérifié)

COMMANDES
CONT (continuer)

Cette commande est utilisée pour redémarrer l’exécution d’un pro­
gramme qui a été arrêté soit en utilisant la touche STOP, soit une in­
struction STOP, soit l’instruction SEND à l’intérieur du programme. Le
programme redémarre exactement au même endroit où il a été inter­
rompu.

CONT ne fonctionne pas si vous avez modifié ou ajouté des lignes au
programme (ou même si vous avez juste déplacé le curseur) ou bien si
le programme est arrêté à la suite d’une erreur ou si vous avez provoqué
une erreur avant d’essayer de redémarrer le programme. Dans ces cas,
vous obtenez un message d’erreur CAN’T CONTINUE ERROR.

114

LIST

La commande LIST vous permet de jeter un coup d’oeil sur les lignes
d’un programme BASIC qui sont dans la mémoire. Vous pouvez deman­
der l’affichage de la totalité du programme ou seulement de certains
numéros de lignes:

LIST
LIST 10-

LIST 10
LIST -10
LIST 10-20

Affiche la totalité du programme
Affiche le programme uniquement de la ligne 10
jusqu’à la fin
N’affiche que la ligne 10
Affiche les lignes du début jusqu’à 10
Affiche les lignes 10 à 20 comprises

LOAD

Cette commande est utilisée pour transférer un programme de la
bande ou du disque dans la mémoire de manière que le programme puis­
se être utilisé. Si vous avez seulement frappé LOAD et pressé la touche
RETURN, le premier programme trouvé sur la cassette sera mis en
mémoire. La commande peut être suivie par un nom de programme en­
tre guillemets. Le nom peut alors être suivi par une virgule et un nombre
ou une variable numérique qui agit comme un numéro de périphérique
pour indiquer d’où vient le programme.

Si aucun numéro de périphérique n’est donné, le COMMODORE 64
suppose qu’il s’agisse du périphérique numéro 1 qui est l’unité de cas­
sette. L’autre périphérique communément utilisé avec la commande
LOAD est l’entraîneur de disque qui est le périphérique no 8.

LOAD Met en mémoire le programme suivant de la bande
LOAD «HELLO» Explore la bande pour chercher le programme ap­

pelé HELLO et charge le programme s’il est trouvé.
LOAD A$ Cherche le programme dont le nom est dans la va­

riable A$
LOAD «HELLO», 8 Cherche le programme intitulé HELLO sur l’entraî­

neur de disque
LOAD «*», 8 Cherche le premier programme du disque

NEW

Cette commande efface la totalité du programme dans la mémoire et
efface également toutes les variables qui peuvent avoir été utilisées. A
moins que le programme n’ait été sauvegardé (SAVE), il est perdu. Soyez
très prudent quand vous utilisez cette commande.

115

La commande NEW peut également être utilisée comme instruction du
programme BASIC. Lorsque le programme atteint cette ligne, le pro­
gramme est effacé. C’est utile quand vous souhaitez tout effacer lors­
que le programme est réalisé.

RUN

Cette commande provoque l’exécution d’un programme une fois que
le programme est chargé dans la mémoire. S’il n’y a pas de numéro de
ligne après RUN, l’ordinateur démarre sur le numéro de ligne le plus
bas. Si un numéro de ligne est désigné, le programme commence l’exé­
cution à partir de la ligne spécifiée.

RUN Démarre le programme sur le numéro de ligne le
plus bas

RUN 100 Démarre l’exécution sur la ligne 100
RUN X UNDEFINED STATEMENT ERROR (message d’er­

reur instruction indéfinie). Vous devez toujours spé­
cifier un numéro de ligne déterminé, et non une re­
présentation de variable.

SAVE

Cette commande mémorise l’actuel programme sur cassette ou dis­
que. Si vous tapez seulement SAVE et RETURN, le programme est sau­
vegardé (SAVE) sur la cassette. L’ordinateur n’a aucun moyen de savoir
si un programme existe déjà sur cette bande considérée, si bien que
vous devez faire très attention à vos bandes sinon vous pouvez effacer
un programme valable.

Si vous tapez SAVE suivi d’un nom entre guillements ou d’une varia­
ble-chaîne, l’ordinateur fournira le programme de ce nom de manière
qu’il puisse être plus aisément localisé et repris à l’avenir. Le nom peut
également être suivi d’un numéro de périphérique.

Une virgule et un second nombre, soit 0 soit 1, peuvent être placés
après le numéro de périphérique. Si le second nombre est 1, le COM­
MODORE 64 place un marqueur END-OF-BANDE après votre program­
me. Ceci signale à l’ordinateur de ne pas chercher plus en avant sur la
bande dans le cas où vous donneriez une commande supplémentaire
LOAD. Si vous essayez de charger un programme et que l’ordinateur
trouve l’un de ces marqueurs, vous obtiendrez le message d’erreur FILE
NOT FOUND ERROR (fichier non trouvé).

SAVE Mémorise le programme sur bande sans nom
SAVE «HELLO» Mémorise le programme sur bande sous le nom

HELLO
116

SAVE A$

SAVE «HELLO», 8

Mémorise le programme sur bande sous le nom
A$
Mémorise le programme sur disque sous le nom
HELLO

SAVE «HELLO», 1,1 Mémorise le programme sur bande sous le nom
HELLO et fait suivre le programme du marqueur
END-OF-TAPE.

VERIFY

Cette commande incite l’ordinateur à contrôler le programme sur le
disque ou la bande par rapport à celui dans la mémoire. Ceci est une
preuve que le programme est effectivement sauvegardé (SAVE) dans le
cas où la bande ou le disque serait détérioré ou quelque chose se serait
mal passé pendant l’opération SAVE. VERIFY sans autres indications
après la commande incite le COMMODORE 64 à contrôler le program­
me suivant sur la bande, quel que soit son nom, par rapport au pro­
gramme présent dans la mémoire.

VERIFY suivit d ’un nom de programme ou d’une variable-chaîne
recherche le programme concerné et ensuite le contrôle. Les numéros
des périphériques peuvent également être incorporés dans la comman­
de de vérification (VERIFY).

VERIFY Contrôle le programme suivant sur la bande
VERIFY «HELLO» Cherche le programme HELLO et le contrôle par

rapport à la mémoire
VERIFY «HELLO», 8 Cherche le programme HELLO sur le disque et

ensuite le contrôle.

INSTRUCTIONS
CLOSE

Cette instruction achève et ferme tous les fichiers utilisés par des in­
structions OPEN. Le numéro suivant CLOSE est le numéro du fichier à
fermer.

CLOSE 2 Seul le fichier no 2 est fermé.

CLR

Cette instruction efface toutes les variables de la mémoire mais laisse
le programme proprement dit intact. L’instruction est automatiquement
exécutée lorsqu’un ordre RUN est donné.

117

CMD

CMD envoie ce qui est sorti, ce que normalement devrait aller sur l’é­
cran (par exemple les instructions PRINT, LIST, mais non POKE sur l’é­
cran), au lieu d’aller sur un autre périphérique. Ceci peut être une impri­
mante ou un fichier de données sur bande ou disque. Ce périphérique
ou fichier doit être d’abord ouvert (OPEN). L’instruction CMD doit être
suivie d’un numéro ou d’une variable numérique se référant au fichier.

OPEN 1,4 Ouvre le périphérique no 4 qui est l’imprimante
CMD 1 La totalité de la sortie normale passe maintenant à

l’imprimante
LIST La liste du programme passe maintenant à l’impri­

mante et non sur l’écran.

Pour ramener la sortie sur l’écran, fermer (CLOSE) le fichier avec
CLOSE 1.

DATA

Cette instruction est suivie d’une liste d’éléments à utiliser par les in­
structions READ. Les éléments peuvent être des valeurs numériques ou
des chaînes de textes et les éléments sont séparés par des virgules. Les
éléments de chaînes n’ont pas besoin d’être à l’intérieur de guillemets à
moins qu’ils contiennent des espaces, des doubles points ou des virgu­
les. Si deux virgules n’ont rien entre elles, la valeur sera lue comme
étant un zéro pour un nombre, ou une chaîne vide.

10 DATA 12, 14.5, «HALLO, PARTNER», 3.14 TEIL 1

DEF FN

Cette instruction vous permet de définir un calcul complexe comme
étant une fonction d’un nom court. Dans le cas d’une longue formule
qui est utilisée de nombreuses fois à l’intérieur du programme, ceci
peut permettre d’économiser du temps et de la place.

Le nom de la fonction sera FN et n’importe quel nom de variable légal
(1 ou 2 caractères de long). En premier lieu, vous devez définir la fonc­
tion en utilisant l’instruction DEF suivie du nom de la fonction. Un jeu
de parenthèses renfermant une valeur numérique suit le nom. Ensuite,
suit la formule effective que vous souhaitez définir avec la variable au
bon endroit. Vous pouvez alors «appeler» la formule en substituant un
nombre quelconque à la variable.

118

10 DEF FNA(X) = 12*(34.75 - X/.3)
A

20 PRINT FNA(7)
t

7 est inséré là où X se
trouve dans la formule

Pour cet exemple, le résultat serait 137.

DIM (dimension d ’un tableau)
Lorsque vous utilisez plus de 11 éléments d’un tableau, vous devez

exécuter l’instruction DIM pour le tableau. Rappelez-vous que la totalité
du tableau occupe de la place dans la mémoire et, en conséquence, ne
créez pas de tableaux plus grands que necessaire.

Multipliez le nombre total d ’éléments dans chaque dimension du ta­
bleau pour représenter le nombre de variables crées avec DIM.

10 DIM A$(40), B7(15), CC%(4,4,4)
î î î41 éléments 16 éléments 125 éléments

Vous pouvez dimensionner plus d’un tableau dans une instruction
DIM. Cependant, veillez à ne pas dimensionner plusieurs fois le même
tableau.

END

Lorsqu’un programme rencontre une instruction END, le programme
s’arrête, comme s’il manquait de lignes. Vous pouvez utiliser CONT
pour redémarrer le programme.

FOR . . . TO . . . STEP

Cette instruction agit avec l’instruction NEXT pour répéter une sec­
tion du programme un nombre déterminé de fois. Le format est le sui­
vant:

FOR (nom de variable) = (démarrage du comptage) TO (fin du compta­
ge) STEP (variable de boucle) = (comptage terminé).

La variable de boucle est incrémentée ou décrémentée pendant le
programme. En l’absence de STEP (PAS) spécifié, l’on suppose que
STEP soit égal à 1. Le démarrage du comptage et la fin du comptage
sont les limites de la valeur de la variable de boucle.

10 FOR L = 1 TO 10 STEP .1
20 PRINT L
30 NEXT L

119

La fin de la valeur de la boucle peut être suivie du mot STEP et d’un
autre nombre ou variable. Dans ce cas, la valeur suivant STEP est ajou­
tée chaque fois à la place de 1. Ceci vous permet de compter en arrière
ou de compter par fractions.

GET

L’instruction GET vous permet d’obtenir des données à partir du cla­
vier, un caractère à la fois. Lorsque GET est exécuté, le caractère qui est
frappé est assigné à la variable. Si aucun caractère n’est frappé, un ca­
ractère zéro (blanc) est assigné.

GET est suivi d’un nom de variable, généralement une variable-chaî­
ne. Si une variable numérique a été utilisée et si une touche non numé­
rique est pressée, le programme s’arrêtera par un message d’erreur.
L’instruction GET peut être placée dans une boucle en contrôlant tout
résultat nul (blanc). Cette boucle se poursuit jusqu’à ce qu’une touche
soit pressée.

10 GET A$: IF A$ = «» THEN 10

GET#

L’instruction GET# est utilisée avec un périphérique ou un fichier au­
paravant OPENed (ouvert) pour entrer un caractère à la fois à partir de
ce périphérique ou de ce fichier.

GET#1 ,A$

Ceci entrerait un caractère d’un fichier de données.

GOSUB

Cette instruction est similaire à GOTO, mis à part que l’ordinateur se
rappelle de la ligne de programme qu’il a exécutée en dernier lieu avant
GOSUB. Lorsqu’une ligne comportant une instruction RETURN est ren­
contrée, le programme revient à l’instruction suivant immédiatement
GOSUB. Ceci est utile lorsqu’il existe dans votre programme une routi­
ne qui se présente dans plusieurs parties du programme. Au lieu de re­
taper constamment la routine, vous pouvez vous servir de GOSUB cha­
que fois que la routine est nécessaire.

20 GOSUB 800

120

GOTO OU GO TO

Lorsqu’une instruction comportant la commande GOTO est atteinte,
la ligne suivante à exécuter sera celle comportant le numéro de ligne
suivant le mot GOTO.

IF . . . THEN

IF . . . THEN permet à l’ordinateur d’analyser une situation et d ’enta­
mer deux voies d’action possibles suivant le résultat. Si l’expression est
confirmée, l’instruction suivant THEN est alors exécutée. Ceci peut être
une instruction BASIC.

Si l’expression n’est pas confirmée, le programme passe directement
à la ligne suivante.

L’expression évaluée peut être une variable ou une formule, dans ce
cas elle est considérée comme étant confirmée si elle n’est pas nulle et
non confirmée (fausse) si elle est nulle. Dans la plupart des cas, il s’agit
d’une expression impliquant les opérateurs relationnels (= , <, >, < = ,
= >, <> , AND, OR, NOT).

10 IF X>0 THEN END

INPUT

L’instruction INPUT permet au programme d’obtenir des données de
l’utilisateur en assignant ces données à une variable. Le programme
s’arrête, affiche un point d’interrogation (?) sur l’écran et attend que
l’utilisateur frappe la réponse et appuie sur la touche RETURN. INPUT
est suivi d’un nom de variable, ou d’une liste de noms de variables, sé­
parés par des virgules. Un message peut être placé à l’intérieur de guil­
lemets avant que la liste des noms de variables soit entrée (INPUT). Si
plus d’une variable doit être entrée (INPUT), elles doivent être séparées
par des virgules lorsqu’elles sont frappées.

INPUT#

INPUT# est similaire à INPUT mais tire les données d’un fichier ou
d’un périphérique précédemment OPENed (ouvert).

LET

LET n’est presque jamais utilisé dans des programmes vu qu’il est op­
tionnel, mais cette instruction est le coeur de tous les programmes BA­
SIC. Le nom de la variable qui doit être assigné, le résultat d’un calcul,
est sur le côté gauche du signe égal et la formule à droite.

121

NEXT

NEXT est toujours utilisé en liaison avec l’instruction FOR. Lorsque le
programme atteint une instruction NEXT, il contrôle l’instruction FOR
pour déterminer si la limite de la boucle a été atteinte. Si la boucle n’est
pas terminée, la variable de la boucle est augmentée de la valeur STEP
spécifiée. Si la boucle est terminée, l’exécution progresse avec l’in­
struction suivant NEXT.

NEXT peut être suivi d ’un nom de variable, ou de la liste de noms de
variables, séparés par des virgules. S’il n’y a pas de noms mentionnés,
la dernière boucle démarrée est celle achevée. Si des variables sont
données, elles sont achevées dans l’ordre de gauche à droite.

10 FOR X = 1 TO 100 : NEXT

ON

Cette commande transforme les commandes GOTO et GOSUB en
versions spéciales de l’instruction IF. ON est suivi d’une formule qui est
évaluée. Si le résultat du calcul est 1, la première ligne de la liste est
exécutée; si le résultat est 2, la seconde ligne est exécutée, et ainsi de
suite. Si le résultat est 0, négatif ou supérieur à la liste des nombres, la
dernière ligne exécutée sera l’instruction suivant l’instruction ON.

10 INPUT X
20 ON X GOTO 10,20,30,40,50

OPEN

L’instruction OPEN permet au COMMODORE 64 d’accéder à des pé­
riphériques, tels que le lecteur enregistreur de cassette et le disque de
données, une imprimante ou même l’écran. OPEN est suivi d’un nom­
bre (0-255) qui est le nombre auquel toutes les instructions qui suivent se
réfèrent. Il s’agit généralement d’un second nombre après le premier
qui est le numéro du périphérique.
Les numéros de périphériques sont les suivants:

0 Ecran
1 Cassette
4 Imprimante
8 Disque

Après le numéro du périphérique peut se trouver un troisième nomb­
re à nouveau séparé par une virgule qui est l’adresse secondaire. Dans
le cas de la cassette, il s’agit de 0 pour lecture, 1 pour enregistrement et
2 pour enregistrement avec marqueur de fin de bande.

122

Dans le cas du disque, le nombre se réfère à la mémoire tampon ou
au numéro de canal. Dans l’imprimante, l’adresse secondaire comman­
de les caractéristiques, telles que l’impression étendue. Pour plus de
détails, voir le manuel de référence du programmeur du COMMODORE
64.

10 OPEN 1,0 OPENs (ouvre) l’écran (SCREEN) comme un péri­
phérique

20 OPEN 2,1,0,«D» OPENs (ouvre) la cassette pour la lecture, le fichier
à rechercher est D

30 OPEN 3,4 OPENs (ouvre) l’imprimante
40 OPEN 4,8,15 OPENs (ouvre) le canal des données sur le disque

Voir également: CLOSE, CMD, GET#, INPUT# et PRINT#, la variable
de système ST et l’annexe B.

POKE

POKE est toujours suivi de deux nombres ou formules. La première
position est un emplacement de mémoire; la seconde position est une
valeur décimale de 0 à 255 qui doit être placée dans l’emplacement de
la mémoire pour remplacer toute valeur auparavant mémorisée.

10 POKE 53281,0
20 S = 4096*13
30 POKE S+29,8

PRINT

L’instruction PRINT est la première que la plupart des gens appren­
nent à utiliser, mais il existe un certain nombre de variations auquelles il
faut faire attention. PRINT peut être suivi de:

Chaîne-texte avec des guillemets
Noms de variables
Fonctions
Signes de ponctuation.

Les signes de ponctuation sont utilisés pour faciliter le formatage des
données sur l’écran. La virgule divise l’écran en 4 colonnes, alors que le
point-virgule supprime tous les espacements. Aucun signe ne peut être
le dernier symbole d’une ligne. Ceci fait que l’affichage de l’exemple
suivant est réalisée comme s’il y avait une continuation de la même in­
struction PRINT.

10 PRINT «HALLO»
20 PRINT «HALLO»,A$

123

30 PRINT A+B
40 PRINT J;
60 PRINT A,B,C,D
Voir également: les fonctions POS, SPC et TAB

PRINT#
Il n’y a pas une grande différence entre cette instruction et PRINT.

PRINT# est suivi d’un nombre qui se réfère au périphérique ou au fi­
chier de données précédemment OPENed (ouvert). Ce nombre est suivi
d’une virgule et une liste doit être affichée. La virgule et le point-virgule
ont le même effet que s’ils se trouvaient dans PRINT. Veuillez remar­
quer que certains périphériques ne fonctionnent pas avec TAB et SPC.

100 PRINT#1, «DATEN INHALTE»;A%,B1 ,C$

READ
READ est utilisé pour assigner les informations provenant des in­

structions DATA à des variables, de telle manière que les informations
soient utilisées. L’on doit veiller à éviter les chaînes de lecture (REA-
Ding) où READ est supposé d’être un nombre, ce qui entraînerait un
message d’erreur TYPE MISMATCH ERROR (désaccord de frappe).

REM (remarque)

REMark est un rappel à celui qui lit une LISTe du programme. Cette
instruction peut expliquer une partie du programme ou fournir des in­
structions supplémentaires. Les instructions REM n’affectent en aucu­
ne manière le fonctionnement du programme sauf qu’elle augmente sa
longueur. REM peut être suivi de n’importe quel texte.

RESTORE
Lorsque cette instruction est exécutée dans un programme, le poin­

teur auquel un élément d’une instruction DATA sera ensuite lu (READ)
est réinitialisé sur le premier élément de la liste. Ceci vous confère la
possibilité de re-READ (relire) les informations. RESTORE est placé in­
dépendamment sur une ligne.

RETURN
Cette instruction est toujours utilisée en liaison avec GOSUB. Lors­

que le programme rencontre une instruction RETURN, il passe immé­
diatement à l’instruction suivant la commande GOSUB. Si aucune com­
mande GOSUB n’a été auparavant générée, un message d’erreur RE­
TURN WITHOUT GOSUB ERROR (RETURN SANS GOSUB) apparaît.

124

STOP

Cette instruction arrête l’exécution du programme. Le message
BREAK IN xxx sera affiché où xxx est le numéro de ligne contenant STOP.
Le programme peut être redémarré en utilisant la commande CONT.
STOP est normalement utilisé dans la mise au point d’un programme.

SYS

SYS est suivi d’un nombre décimal ou d’une valeur numérique com­
prise entre 0 et 65535. Le programme commencera alors l’exécution du
programme en langage machine en commençant à partir de cet empla­
cement de la mémoire. C’est similaire à la fonction USR mais ne permet
pas le passage de paramètres.

WAIT

WAIT est utilisé pour arrêter le programme jusqu’à ce que les conte­
nus d’un emplacement de la mémoire se modifient d’une façon spécifi­
que. WAIT est suivi d’un emplacement de mémoire (X) comportant jus­
qu’à deux variables. Le format est le suivant:

WAIT X,Y,Z

Les contenus de l’emplacement de la mémoire sont en premier lieu
traités avec l’instruction logique exclusive ou avec le troisième nombre,
s’il est présent, et ensuite avec AND avec le second nombre. Si le résul­
tat est nul, le programme revient à cet emplacement de la mémoire et
effectue à nouveau le contrôle. Lorsque le résultat est différent de zéro,
le programme est poursuivi avec l’instruction suivante.

FONCTIONS NUMERIQUES

ABS(X) (valeur absolue)

ABS fournit la valeur absolue du nombre, sans son signe (+ ou -). La
réponse est toujours positive.

ATN(X) (arctangente)

Elle fournit l’angle mesuré en radians dans la tangente X.

COS(X) (cosinus)

Elle fournit la valeur du cosinus de X, où X est un nombre mesuré en
radians.

125

EXP(X)

Elle fournit la valeur de la constante mathématique e (. . .) élevée à la
puissance de X.

FNxx(X)

Elle fournit la valeur de la fonction xx définie par l’utilisateur créée
dans une instruction DEF FNxx(X).

INT(X)

Elle fournit la valeur tronquée de X, c’est-à-dire avec toutes les posi­
tions décimales à droite du point décimal éliminées. Le résultat est tou­
jours inférieur à ou égal à X. En conséquence, tous les nombres néga­
tifs, avec des positions décimales, deviennent des entiers inférieurs à la
valeur courante.

LOG(X) (logarithme)

Elle fournit le log naturel de X. Le log naturel de la base e (voir
EXP(X)). Pour convertir en log base 10, diviser simplement par LOG(10).

PEEK(X)

Elle est utilisée pour trouver les contenus de l’emplacement X de la
mémoire compris entre 0 et 65535 en fournissant un résultat compris
entre 0 et 255. PEEK est fréquemment utilisé en liaison avec l’instruc­
tion POKE.

RND(X) (nombre aléatoire)

RND(X) fournit un nombre aléatoire compris entre 0 et 1. Le premier
nombre aléatoire doit être généré par la formule RND(-TI) pour que les
choses commencent différemment chaque fois. Après quoi, X doit être I
ou n’importe quel nombre positif. Si X est nul, le résultat sera le même
nombre aléatoire que le dernier. Une valeur négative de X réinitialise le
générateur. L’utilisation du même nombre négatif pour X entraîne la
même séquence de nombres «aléatoires». La formule de génération d’un
nombre compris entre X et Y est la suivante:

N = INT (RND(1)*Y)+X

où Y est la limite supérieure
X est la limite inférieure des nombres souhaités.

1 2 6

SGN(X) (signe)

Cette fonction fournit le signe (positif, négatif ou nul) de X. Le résultat
sera +1 s’il est positif, 0 s’il est nul et -1 s’il est négatif.

SIN(X) (sinus)

SIN(X) est la fonction sinusoïdale trigonométrique. Le résultat sera le
sinus X où X est un angle exprimé en radians.

SQR(X) (racine carrée)

Cette fonction fournit la racine carrée de X où X est un nombre positif
ou 0. Si X est négatif, il en résulte le message d’erreur ILLEGAL QUAN-
TITY ERROR (erreur quantité illégale).

TAN(X) (tangente)

Le résultat sera la tangente de X où X est un angle en radians.

USR(X)

Lorsque cette fonction est utilisée, le programme saute un program­
me en langage machine dont le point de départ est contenu dans des
emplacements de la mémoire. Le paramètre X est amené au programme
en langage machine qui fournit de nouveau une autre valeur au pro­
gramme BASIC. Se reporter au manuel de référence du programmeur
COMMODORE 64 pour plus de détails sur cette fonction et la program­
mation en langage machine.

FONCTIONS - CHAINES
ASC(X$)

Cette fonction fournit le code ASCII du premier caractère de X$.

CHR$(X)

Il s’agit de l’opposé de ASC et fournit un caractère de chaîne dont le
code ASCII est X.

LEFT$(X$,X)

Elle fournit une chaîne contenant les caractères X les plus à gauche
de X$.

127

LEN(X$)

Le nombre de caractères (y compris les espaces et les autres symbo­
les) de la chaîne X$ sera fourni.

MID$(X$,S,X)

Elle fournit une chaîne contenant X caractères en partant du Sème
caractère de X$.

RIGHT$(X$,X)

Fournit le caractère X le plus à droite de X$.

STR$(X)

Elle fournit une chaîne qui est identique à la version affichée de X.

VAL(X$)

Cette fonction convertit X$ en un nombre et essentiellement l’opéra­
tion inverse de STR$. La chaîne est examinée à partir du caractère le
plus à gauche en direction de la droite, tant que les caractères sont
dans un format de nombre

10 X = VAL („123.456“)
10 X = VAL („12A13B“)
10 X = VAL („RIU017“)
10 X = VAL („-1.23.15.67“)

FRE(X)

Cette fonction fournit le nombre d’octets inutilisés disponibles dans
la mémoire, quelle que soit la valeur de X.

POS(X)

Cette fonction fournit le numéro de la colonne (0-39) sur laquelle la
prochaine instruction PRINT commencera sur l’écran. X peut avoir une
valeur quelconque et n’est pas utilisé.

SPC(X)

Cette fonction est utilisée dans une instruction PRINT pour faire sau­
ter les espaces X en avant.

TAB(X)

TAB est également utilisé dans une instruction PRINT. La position
suivante à afficher se trouvera dans la colonne X.

X = 123.456
X = 12
X = 0
X = -1.23

128

ANNEXE D

ABREVIATIONS
DES MOTS CLES BASIC

Pour gagner du temps lors de la frappe des programmes et comman­
des, le BASIC COMMODORE 64 permet à l’utilisateur d’abréger la plu­
part des mots clés. L’abréviation de PRINT est un point d’interrogation.
Les abréviations des autres mots sont obtenues en frappant la première
ou la seconde lettre du mot suivie de la lettre suivante SHIFTed (déca­
lée) du mot. Si les abréviations sont utilisées dans une ligne de pro­
gramme, le mot clé sera sorti sur la liste sous forme complète. Remar­
quez que certains des mots clés, lorsqu’ils sont abrégés, comprennent
une parenthèse gauche.

Commande Abréviation

FOR

FRE

GET

GOSUB

GOTO

INPUT#

LET

LEFTS

LIST

LOAD

MID$

NEXT

NOT

OPEN

F

F

G

GO

I

L

LE

L

L

M

N

N

0

SHIFT

SHIFT

SHIFT

SHIFT

SHIFT

SHIFT

SHIFT

SHIFT

SHIFT

SHIFT

SHIFT

SHIFT

SHIFT

SHIFT

Représentation
SUR L’ÉCRAN

G ° g

■ 0

L □
- Q

l □

« □

0 □

129

Commande Abréviation
Représentation
SUR L’ÉCRAN Commande Abréviation

Représentation
SUR L’ÉCRAN

PEEK

POKE

PRINT

PRINT#

READ

RESTORE

RETURN

RIGHTS

RND

RUN

SAVE

SGN

SIN

SHIFT

SHIFT

SHIFT

SHIFT

SHIFT

SHIFT

SHIFT

SHIFT

SHIFT

SHIFT

SHIFT

SHIFT

?

» B
be ®
re DD
h Q

r 0

r □

s ®

s O

s □

SPC(

SQR

STEP

STOP

STR$

SYS

TAB

THEN

USR

VAL

SHIFT

SHIFT

SHIFT

SHIFT

SHIFT

VERIFY

WAIT

SHIFT

SHIFT

130

□ ■ E □ Œ B E □ B ffl □ ®

ANNEXE E

CODES D’AFFICHAGE
SUR L’ECRAN

Le tableau suivant fournit une liste de tous les caractères incorporés
dans le jeu de caractères du COMMODORE 64. Il indique les nombres
qui doivent être POKEd (mis) dans la mémoire de l’écran (emplace­
ments 1024-2023) pour obtenir un caractère voulu. Le caractère auquel
correspond un nombre PEEKed (supprimé) de l’écran est également in­
diqué.

Deux jeux de caractères sont disponibles, mais seul un jeu à la fois.
Ceci signifie que vous ne pouvez avoir de caractères d’un jeu sur l’é­
cran et simultanément avoir des caractères de l’autre jeu affichés. Les
jeux sont commutés en appuyant simultanément sur les touches SHIFT
et COMMODORE.

A partir du BASIC, POKE 53272,29 passe au mode case supérieure et
POKE 53272,31 passe au mode case inférieure. Tout nombre sur le ta­
bleau peut également être représenté de façon inverse (REVERSE). Le
code caractère inversé peut être obtenu en ajoutant 128 aux valeurs in­
diquées.

Si vous souhaitez afficher un cercle plein sur l’emplacement 1504,
POKE (mettre) le code du cercle (81) sur l’emplacement 1504: POKE
1504,81.

Ceci est un emplacement de mémoire correspondant pour contrôler
la couleur de chaque caractère affiché sur l’écran (emplacements . . .).
Pour changer la couleur du cercle au jaune (code de couleur 7), vous
devriez POKE (mettre) le caractère de couleur dans l’emplacement cor­
respondant de la mémoire (57776): POKE 55576,7.

Se reporter à l’annexe G en ce qui concerne les cartes complètes des
mémoires de l’écran et des couleurs avec les codes de couleurs.

131

CODES DE L’ECRAN
Jeu 1 Jeu 2 Poke Jeu 1 Jeu 2 Poke Jeu 1 Jeu 2 Poke

@ 0 c C 3 F f 6
A a 1 D d 4 G g 7
B b 2 E e 5 H h 8
I i 9 % 37 a A 65
J i 10 & 38 CD B 66
K k 11 ' 39 B C 67
L I 12 (40 B D 68
M m 13) 41 □ E 69
N n 14 * 42 □ F 70
0 0 15 + 43 □ G 71
P P 16 44 □ H 72
Q q 17 - 45 □ I 73
R r 18 46 □ J 74
S s 19 / 47 □ K 75
T t 20 0 48 □ L 76
U u 21 1 49 S M 77
V V 22 2 50 0 N 78
w w 23 3 51 n 0 79
X X 24 4 52 □ P 80
Y y 25 5 53 m Q 81
Z Z 26 6 54 □ R 82
[27 7 55 a S 83
£ 28 8 56 □ T 84
] 29 9 57 □ U 85
î 30 58 0 V 86

31 » 59 O W 87
SPACEI 32 < 60 a X 88

! 33 = 61 □ Y 89

132

Jeu 1 Jeu 2 Poke Jeu 1 Jeu 2 Poke Jeu 1 Jeu 2 Poke

“ 34 > 62 æ 2 90
35 ? 63 æ 91
$ 36 B 64 E 92m 93 E 105 E 117

æ 94 □ 106 □ 118

a s 95 CB 107 n 119
I SPACE i 96 □ 108 n 120

n 97 B 109 a 121

H 98 B 110 □ i0 122

n 99 □ 111 . 123
□ 100 B 112 a 124
□ 101 H 113 B 125

m 102 B 114 H 126
□ 103 ffl 115 H 127

s 104 □ 116

Les codes de 128 à 255 sont les images inversées des codes de 0 à
127.

133

ANNEXE F

CODES ASCII ET CHR$
.Cette annexe vous indique quels sont les caractères qui apparaissent

si vous affichez (PRINT) CHR$(X) pour toutes les valeurs possibles de X.
Elle montre également les valeurs obtenues en frappant PRINT
ASC(«X») où X est un caractère quelconque que vous pouvez frapper.
C’est utile dans l’évaluation du caractère reçu dans une instruction GET
en convertissant la case supérieure/inférieure et en imprimant les com­
mandes basées sur des caractères (tels que passage à la case supérieu­
re/inférieure) qui pourraient ne pas être placées entre guillemets.

Signe CHR$ Signe CHR$ Signe CHR$ Signe CHR$

0 B 17 “ 34 3 51
1 A 18 # 35 4 52
2 B 19 $ 36 5 53
3 B 20 % 37 6 54
4 21 & 38 7 55

22 39 8 56
6 23 (40 9 57
7 24) 41 58

d is a b ilita 25 * 42 1 59
26 + 43 <z 60

10 27 I 44 = 61
11 28 - 45 I> 62
12 B 29 46 ? 63

I RETURN 30 / 47 @ 64
p A S S A G G I ^ ^ f f | M

1 IN N E G A T IV O 31 0 48 A 65 !
15 (SPACE] 32 1 49 B 66
16 ! 33 2 50 C 67

134

Signe CHR$ Signe CHR$ Signe CHRÇ Signe CHR$

D 68 97 B 126 155
E 69 m 98 a 127 156
F 70 B 99 128 157
G 71 B 100 129 Ê B k 158
H 72 □ 101 130 A 159
I 73 B 102 131 ■ SPACE I 160
J 74 D 103 132 D 161
K 75 □ 104 fi 133 H 162
L 76 □ 105 f3 134 n 163
M 77 □ 106 f5 135 □ 164
N 78 Q 107 f7 136 □ 165
0 79 □ 108 f2 137 m 166
P 80 S 109 f4 138 □ 167

Q 81 0 110 f6 139 a 168

R 82 □ 111 f8 140 B 169

S 83 □ 112 41 □ 170

T 84 m 113 ■ P A S S A G G IO A L P V B B
1 M A IU S C O L O m L L M œ 171

U 85 □ 114 143 a 172

V 86 115 144 B 173

w 87 □ 116 145 H 174

X 88 □ 117 lÊBUk 146 a 175

Y 89 118 Q n 147 H 176

Z 90 o 119
■ f f M

148 B 177

[91 120 149 B 178

£ 92 □ 121 150 ffi 179

] 93 æ 122 151 D 180

î 94 æ 123 152 E 181
« - 95 B 124 153 □ 182B 96 m 125 154 n 183

135

Signe CHR$ Signe CHR$ Signe CHR$ Signe CHR$

H 184 □ 186 a 188 E 190

a 185 □ 187 H 189 H 191

Codes 192-233
Codes 224-254
Code 255

comme Codes 96-127
comme Codes 160-190
comme Code 126

136

ANNEXE G

MEMOIRES DE L’ECRAN
ET DES COULEURS

Les tableaux suivants donnent une liste des emplacements de la mé­
moire qui commandent la mise en place des caractères sur l’écran et
des emplacements utilisés pour modifier les couleurs des différents ca­
ractères, de même que l’indication des codes de couleur des caractè­
res.

1024
1064
1104
1144
1184
1224
1264
1304
1344
1384
1424
1464
1504
1544
1584
1624
1664
1704
1744
1784
1824
1864
1904
1944
1984

MEMOIRE DE L’ECRAN
COLONNE

0 10 20 30 39

t
2023

137

LIG
N

E

Les valeurs effectives à mettre (POKE) dans un emplacement de mé­
moire de couleur pour modifier la couleur d ’un caractère sont les sui­
vantes:

0 NOIR 8 ORANGE
1 BLANC 9 BRUN
2 ROUGE 10 ROUGE clair
3 TURQUOISE 11 GRIS 1
4 POURPRE 12 GRIS 2
5 VERT 13 VERT clair
6 BLEU 14 BLEU clair
7 JAUNE 15 GRIS 3

Par exemple, pour modifier la couleur d’un caractère situé dans le coin
supérieur gauche de l’écran en rouge, frapper: POKE 55296,2.

MEMOIRE DES COULEURS
COLONNE

0 10 20 30 39

55335
I

55296— ►
55336
55376
55416
55456
55496
55536
55576
55616
55656
55696
55736
55776
55816
55856
55896
55936
55976
56016
56056
56096
56136
56176
56216
56256

t
56295

138

LIG
N

E

ANNEXE H

DERIVATION DE
FONCTIONS MATHEMATIQUES

Les fonctions qui ne sont pas intrinsèques au BASIC COMMODORE
64 peuvent être calculées comme suit:

FONCTION EQUIVALENT BASIC

SECANTE
COSECANTE
COTANGENTE

SEC(X) = 1/COS(X)
CSC(X) = 1/SIN(X)
COT(X) = 1/TAN(X)

SINUS INVERSE
COSINUS INVERSE
COTANGENTE INVERSE
SECANTE INVERSE
COSECANTE INVERSE

ARSIN(X) = ATN(X/SQR(1-X|2))
ARCOS(X) = -A TN (X /S Q R (1-X Î2)) + tt/2
ARCOT(X) = ATN(X) + 7t/2
ARSEC(X) = ATN(X/SQR(X|2-1))
ARCSC(X) = A TN (X /S Q R (X |2-1))

+ (SGN(X)-1)*ff/2

SINUS HYPERBOLIQUE
COSINUS HYPERBOLIQUE
TANGENTE HYPERBOLIQUE

SINH(X) = (EXP(X) —EXP(—X))/2
COSH(X) = (EXP(X) + E XP(-X))/2
TANH(X) = EXP(-X)/(EXP(X) + EXP

COTANGENTE HYPERBOLIQUE
(—X))*2+1

COTH(X) = EXP(-X)/(EXP(X) —EXP

SECANTE HYPERBOLIQUE
COSECANTE HYPERBOLIQUE

(—X))*2+1
SECH(X) = 2/(EXP(X) + EXP(—X))
CSCH(X) = 2/(EXP(X) —EXP(—X))

SINUS HYPERBOLIQUE INVERSE
COSINUS HYPERBOLIQUE INVERSE
TANGENTE HYPERBOLIQUE INVERSE
COTANGENTE HYPERBOLIQUE INVERSE
SECANTE HYPERBOLIQUE INVERSE
COSECANTE HYPERBOLIQUE INVERSE

ARSINH(X) = LOG(X+SQR(X|2+1))
ARCOSH(X) = LOG(X + SQ R (X |2-1))
ARTANH(X) = LOG((1 +X)/(1 —X))/2
ARCOTH(X) = LOG((X + 1)/(X -1))/2
ARSECH(X) = LOG((SQR(1 — X f 2)+ 1)/X)
ARCSCH(X) = LOG((SQR(1 +X |2) + 1)/X)

*SGN(X)

139

ANNEXE I

SORTIES DE BROCHES DES
PERIPHERIQUES D’ENTREE/SORTIE

Cette annexe est conçue pour vous présenter les connexions qui
peuvent être établies sur votre COMMODORE 64.

1) Entrée/sortie jeu
2) Fente chargeur de programmes
3) Audio/vidéo
4) Entrée/sortie sérielles

(disque/imprimante)
5) Sortie modulateur
6) Cassette
7) Port utilisateur

Port commande 1
Broche Type Remarque

1 JOYAO
2 JOYA1
3 JOYA2
4 JOYA3
5 POT AY
6 BUTTON A/LP
7 + 5V MAX. 100mA
8 GND
9 POT AX

Port commande 2
Broche Type Remarque

1 JOYBO
2 JOYB1
3 JOYB2
4 JOYB3
5 POT BY
6 BUTTON B
7 + 5V MAX. 100mA
8 GND
9 POT BX

* Bouton = Bouton fen du levier de com­
mande

** p o t = Potentiomètre du Paddle

140

Fente d’extension du chargeur de programmes
Broche Type Broche Type

22 GND 11 ROML
21 CDO 10 1/02
20 CD1 9 EXROM
19 CD2 8 GAME
18 CD3 7 1/01
17 CD4 6 Dot Clock
16 CD5 5 CR/W
15 CD6 4 I rgT
14 CD7 3 + 5V
13 DMA 2 + 5V
12 BA 1 GND

Broche Type
Z GND
Y CAO
X CAI
W CA2
V CA3
U CA4
T CA5
S CA6
R CA7
P CA8
N CA9

Broche Type
M CAIO
L CAI 1
K CAI 2
J CAI 3
H CAI 4
F CAI 5
E S02
D NMI
C RESET
B ROMH
A GND

1 2 3 4 5 6 7 8 9 1011 12 1314 1516 17 18 19 20 21 22
■ ■

A B C D E F H J K L M N P R S T U V W X Y Z

Audio/vidéo
Broche Type

1 LUMINOSITE
2 MASSE
3 SORTIE AUDIO
4 SORTIE VIDEO
5 ENTREE AUDIO

Entrée/sortie sérielles
Broche Type

1 SRQIN SERIALE
2 MASSA
3 IN/OUTATN SERIALE
4 IN/OUTCLK SERIALE
5 IN/OUT DATI SERIALI
6 RESET

141

Cassette
Broche Type

A-l MASSE
B-2 + 5V
C-3 MOTEUR CASSETTE
D-4 LECTURE CASSETTE
E-5 ENREGISTREMENT CASSETTE
F-6 DETECTION CASSETTE

Entrée/sortie utilisateur
Broche Type Remarque

1 GND
2 + 5V MAX. 100 mA
3 RESET
4 CNT1
5 SPI
6 CNT2
7 SP2
8 PC2
9 SER. AT N IN

10 9 VAC MAX. 100 mA
11 9 VAC MAX. 100 mA
12 GND

Broche Type Remarque
A GND
B FLAG2
C PB0
D PB1
E PB2
F PB3
H PB4
J PB5
K PB6
L PB7
M PA2
N GND

1 2 3 4 5 6 7 8 9 10 11 12

A B C D E F H J K L M N

142

ANNEXE J

Nous avons indu un certain nombre de programmes utiles pour vous
permettre d’essayer votre COMMODORE 64. Ces programmes s’avèront
aussi bien divertissant qu’utiles.

PROGRAMMES A ESSAYER
100 PRINT"ntt»M»»l TROUVER LE MOT CLE
110 INPUT"«REGLES DU JEU C O / N) Z $:IFASCCZf)=78THEN170
120 PR INT "KITU DOIS TROUVER LE MOT CLE SECRET!”
130 PRINT"»IL CONTIENT 5 LETTRES"
140 PRINT"»APRES CHRQUE ESSAIS TU SAURAS/'
150 PRINT"»COMBIEN DE LETTRES SONT JUSTES."
160 PRINT"»UN CONSEIL: PAS DEVINER SANS REFLECHIR"
170 DATA BCPSE .• BMMFF > BSSFU > CFUPO > CJKPV
180 DATA CPVMF,BBOBM,BIBNQ,DPFVS..EFCJU
190 DATA EJWJO,FMFUF,FVBFT,GFUFS,GJVFS
200 DATA HBSEF.. HSFl-JF, IPNNF, JTBSE > KBNCF
210 DATA KBE JT, MBNQF t MPZFS .• NBM JO > NPVMF
220 DATA nBQQF,OPFVE,PODMF,PVUJM,QBSJT
230 DATA qfu JU > RVBOE > SBGMF .• SPEFS ; TDPSF
240 DATA jPBMF , IJF JOU, USB JG, VMUSB, VO JPO
250 DATA WBTUF- WJSJM, XBHPO.- VFSFT, ZBDIU
260 DATA CFCSF, TPFVS.- SFWFS; QFQJO.- EBOTF
270 N*50
280 DIMN$CN)tZC5) > VC5)
290 FORJ=1TON : READH$ C J):NEXTJ
300 T*TI
310 T«T/1000:1FT>=1THEN310
320 Z=RNDC-T)
330 G*0:NCN C RND Cl)#N+1)
340 PRINT"»»DEVINE LE MOT CLE !":IFR>0THEN380
350 PRINT"»C/EST UN MOT SIGNIFICATIF DE 5 LETTRES"
360 PRINT"TU DEVINES ET MOI JE TE DIS/'
370 PRINT"COMBIEN DE LETTRES SONT JUSTES"
380 G=G+l:INPUT"TON ESSAI";Z$
390 IFLEN C Z $) 05THENPRI NT " SB LETTRES ! " : GOTO380

143

400 Ve0 :M=0:H=0
410 F0RJ-1T03
420 Z=RSC< MIB$ <Z*,J,1)):V* ASC <MID$ C N*,J,1)) ■-1:1FY-64THENY®90
430 I FZ<65ORZ>90THENPR I NT " «CODE I NVALRBLE ! " •’ GOTO380
440 IFZ=65ORZ«69ORZs73ORZ=790QRZ=83ORZ*89THENV«V+1
450 IFZ=VTHENM*M+1
460 Z(J)SZ :Y(J)SY :NEXT J
470 IFP1*5THEN380
480 IFV®0ORV*3THENPR I NT " «QUELLE BETI SE !": GOTO380
490 F0RJ=1T05:Y*V(J)
500 FQRK=1T05:IFV=Z(K)THENH=H+1 : Z<K>*0 :OOTO520
510 NEXTK
520 NEXTJ
530 P R I N T " i W W » » * W » W » W W » r ; H ; "LETTRES JUSTES"
540 IFGO0THEN380
550 PRINT"¡RENONCE! LE MOT CLE S'APPELLE '"J
560 F0RJ=1T05:PRINTCHR$<Y<J>); =NEXTJ
570 PRINT"=/":OÛTO590
580 PRINT"TU RS REUSSI EN"G"ESSRIS!"
590 INPIJT" «LIN NOUVEAU MOT"JZ$
600 R=1: IFRSC(Z$''O78THEN330

144

100 REM MICHREL ROW THE BORT RSHORE
110 SI-54272:W1-SI+4:W2*SI+11:W3«SI+18
120 F0(0)»3000:F0C1>*1508:F0<2)®6030
130 D0=180
140 HT*2T<1/12):REM DEMI PRS
130 DEFFNH< F)*INT C FFX256):REM HAUTE FREQUENCE
160 DEFFNL < F)=F-236#FNH< F):REM BASSE FREQUENCE
170 FORK®0TO20:READX: POKESI+K,X:NEXT : REM TIMBRE
180 READWA,WB,WC:REM FORMES D'ONDES
190 DIMFC100,6>
200 PRINT"D VOIX1 VO1X2 VO1X3 DUREE"
210 N*N+1:FORK=0TO2:RERDF :REM NOTE DEPUIS DATA
220 F*INT<F0<K)*HTTF+.5):HB=FNH< F) :LB*FNL(F):PRINTHB; LB,:REM FREQUENCE H/B
230 F(N,2#K)=IB: FCN,2#K+1)*HB
240 NEXTK
250 READD:PRINT" "D:F<Ni6)®D:REM DUREE
260 IFD>0THEN210
270 POKESI+24,15
230 FORI=lTON-l
290 FORK*0TO2:P0KESI+7#K,F< I,2*K>:P0KESI+7#K+1,F(I,2#K+1>NEXTK:REM 3 FREQU.
300 POKEW1,WA :P0KEU2,WB:P0KEW3,WC:REM ALLUMER LES GENERATEURS
310 FORK*1TOF(1,6)#D8-150:NEXT
320 POKEW1,0:P0KEW2,0:PGKEW3,0:REM ETEINDRE LES GENERATEURS
330 FORK®1TO50:NEXT
340 NEXTI
350 GOTO280
360 BATA0,0,0,1,0,0,235;REM REGISTRE SID
370 DATA0,0,0,1,0,0,255
380 DATA0,0,0,1,0,0,233
390 DATA37,33,33:REM FORME D'ONDES
400 DATA0,0,0,2:REM MELODIE
410 DATA4,0,0,2
420 DATA7,4,0,3
430 DATA4,0,0,1
440 DATA7,4,0,2
450 DATA9,3,0,2
460 DRTR7,4,-5,3
470 BATA-99,-99,-99,1
480 DATA4,0,0,2
490 DATA7,0,0,2
300 DATAS,3,3.8
310 DATA7,4,0,3
320 DATA-99,-99,-99,1
330 DATA4,0,0,2
340 BATA7,4,0,2
550 DATA7,4,0,3
560 DATA4,0,0,1
570 DATA5,2,0,2
580 DATA4,0,0,2
590 DATA2,-l,-5,3
600 DATA-99,-99,-99,1
610 BATA0,-5,0,2
620 DATA2,-1,0,2
630 DATA4,0,0,4
640 DATA2,-5,-5,4
650 DATA0,0,0,3
660 DATA-99,-99,-99,1
670 DATA-99,-99,-99,1

145

100 REM ALPHABETHE
110 BIMA$C26>
120 Z$=MABCDEFGHIJKLMNOPQRSTUVWXVZ"
130 Z1"12343678901234567890123436"
148 PRINT"CLE BUT BU JEU CONSISTE R RRNOER UNE"
150 PRINT"»SERIE DE LETTRES EN ORDRE ALPHABETIQUE."
160 PRINT"ÏPOUR REALISER CECI IL VOUS EST PERMIS"
170 PRINT"KDE TOURNER R CHAQUE FOIS LE DEBUT. BEAUCOUP DE CHANCE!
180 PRINT"»»QUELLE LONGUEUR DOIT AVOIR LA SERIE »"
190 INPUT"RU MAXIMUM
200 IFSG 0RS>25THEN 180
210 FORI=lTOS: A$C I)=MID$CZ$, M) : NEXTI
220 REM ECHANGE PAR HASARD
230 FORI=1TOS:K=INTCRNDCl)*S+!>
240 T$*A$CI):A$CI)SA$CK):A$OOaT$
250 NEXTI
260 OCSUB470:T-0
270 REM TOURNER UNE PART DU STRING
280 T-T+l
290 INPIJT"COMBIEN DOIS-JE TOURNER"RX
300 IFRX=0T'r'EN440
310 IFRX>0ANDRX<sSTHEN330
320 PRINT"DOIT SE TROUVER ENTRE 1 ET S!":GOT0290
330 R=INTCRX/2):FORI=lTOR
340 T$=A$CI)
350 T*=A* CI)= A$ CI)=AiC RX-1 +1>:A$ C RX-1 +1)=T*
360 NEXTI:GOSUB470
370 REM EXAMINER LA SERIE
380 CS1:F0RIC2T0S
390 IFA$CI)>A$CI-1)THEN410
400 C=0
410 NEXTI
420 IFC=0THEN270
430 PRINT"»3FEUSSI EN"T"Il ESSAIS!"
440 INPUT"»ENCORE UNE FOIS";V$
450 IFLEFTiCVi;1)="0"0RV$="0K"0RV$="1"THEN180
460 END
470 PRINT:PRÏNTLEFT$CZ1$,S)
480 FORI=lTOS:PRINTAiCI)J :NEXTI
490 PRINT"»":RETURN

146

100 REM PIPNC ELECTRONIQUE
110 PR I NT "d 3 II HI I II II II I W II ! II II II I "
120 PRINT" SI II II I II II II ! II II ! II II If I "
130 PRINT" 3 I! I! ! I! II II I II II ! II I! I? ! "
140 PRINT" 3 ! ! ! ! ! ! I ! ! ! I II I !"
150 PRINT" 3Q !N IE !R !T IV I!J 11 !0 !P I(? !$! T !.; I = I"
160 PRINT"« 'TOUCHE ESpqCE'': PEBflLE"
170 -PIN“ "«'FI' ' F 3 ' , 'F5', 'F7': CCTPVE"
180 PRIN7,,M'F2','F4','FS','F8':FORME B'ONBES
190 PR I NT" MPRTI ENCE .• JE CRLC'JLE"
200 SI=13*4095+1024:PIMF(26>:PIMK(255>
210 CCRI:=0T028: POKES! +1.. 0 : NEXT
220 F1=7939:FORI = 1T026:F(27-1> =r1*5.8+30*F1=F172f(l/12VNEXT
230 Ki="lO2N3ER5^6u“UI9O0p!?-*/t?a;=" :REM TOUCHES UTILISES
240 PORI = 1TOLEN<X*)1K<RSC(MIB$<K $ N E X T
250 PR I NT "E!
260 PN=0:RB=0:Hq=15:RU=9 :HH=HR*16+RU■PS=RN*16+RB:WF=16:M=1:0K=4:HB=256:Z=0
270 PORI=0T02:POKESI+5+1*7,RS:POKESI+6+1 *7,HT
280 POKES I +2+1 *7, 4000RN3255: pOKES I+3AI *74000/256: NEXT
290 *0’<S$>24,15 +16+64: POKES+23 .< 7 : REM ENLEVER FILTRE
30O OE"R$:IFqf=""THEH360
310 FR=P(K(RSC(P$);)7N-FL=SI+V*?:U=FL+4:IFFR=Z7HEN420
320 P0KEFL+6,Z
330 pCKEcLJ-5,Z
340 POKEL!.. 8 : POKEN .= 0 : REM RESET
350 POKEFL, PR-HB* I NT <. FR/HB): REM BRSSE cREOUEl-'OE
360 POKEFL^l .• FR/-7 : R~M uo'JTE FREQUENCE
3T0 ",0'<EcL+6.' HH' REM MPINTENIR
380 POKE'.-J.■ NF-1-1 '-FORI = 1TO50*PN'N'EXT
380 POKE/
400 IPP=1THENV=,-A1: IFV=3THEHV=0
410 OCT030O
415 REN C0N7R0LE 3EST0UCHES BE FONCTIOH
420 IFR$="”"^UENM=1:0K=4•OOTO300
430 IFP$="_"THENM=2'0K=3:9O+O300
440 Icp*="! "tucvim-,:4 : OK-2: OOTO300
450 *-pS=..THENM^S: 0K=1: OOT300
460 Ic’P$="-! "THENWF=!6: OOTC300
470 IPp$="V"THENNP=32:OCTO300
480 ICP*="'"THENWF=S4:GOTO300
490 IFP$=" /' THENUF=128:OOTO300
500 I*R$=" "THENP=1-P:HH=<HHPNUN072) OR CN0THHPNB2):OOTC300
510 IFR$="TTHEN210
520 OOTO300

RERBV.

147

ANNEXE K

CONVERSION DE PROGRAMMES
BASIC STANDARDS

EN BASIC COMMODORE 64
Si vous avez des programmes rédigés dans un langage BASIC autre

que le BASIC Commodore, certains ajustements mineurs peuvent s’a­
vérer nécessaires avant de les passer sur le COMMODORE 64. Nous
avons indu certaines suggestions pour rendre la conversion plus facile.

Dimensions des chaînes

Supprimer toutes les instructions qui sont utilisées pour déclarer les
longueurs des chaînes. Une instruction telle que DIM A$ (l,J) qui dimen­
sionne un tableau de chaîne de J éléments de la longueur I, doit être
convertie dans l’instruction BASIC Commodore DIM A$ (J).

Certains langages BASIC utilisent une virgule ou une abrévation pour
la concaténation des chaînes. Certains d’eux doivent être modifiés en
un signe plus, qui est l’opérateur BASIC Commodore pour la concaté­
nation des chaînes.

Dans le BASIC COMMODORE 64, les fonctions MID$, RIGHT$ et
LEFT$ sont utilisées pour prendre des sous-chaînes de chaînes. Des
formules telles que A$ (I) pour accéder au l-ième caractère de A$ ou A$
(l,J) pour prendre une sous-chaîne de A$ de la position I à J, doivent êt­
re modifiées comme suit:

Autres langages BASIC BASIC COMMODORE 64
A$(l) = X$ A$ = LEFT$(A$,I-1) + X$+MID$(A$,I + 1)
A$(I,J) = X$ A$ = LEFT$(A$,I-1) + X$+MID$(A$,J + 1)

Assignations multiples

Certains langages BASIC permettent des instructions de la forme sui­
vante pour établir B et C égal à zéro:

10 LET B = C=0

Le BASIC COMMODORE 64 interpréterait le second signe égal com­
me un opérateur logique et établirait B = -1 si C = 0. Par contre, con­
vertirait cette instruction en:

10 B = 0 : C=0

148

Attributions multiples

Certains langages BASIC utilisent une barre de fraction (/) pour sépa­
rer plusieurs instructions sur une ligne. Avec le BASIC COMMODORE
64, séparer toutes les instructions par (:).

Fonctions MAT

Les programmes utilisant les fonctions MAT disponibles dans cer­
tains langages BASIC doivent être rédigées à nouveau en utilisant des
boucles FOR . . . NEXT pour être exécutés correctement.

149

ANNEXE L

MESSAGES D’ERREURS
Cette annexe comprend une liste des messages d’erreur générés par

le COMMODORE 64, avec une description des causes.

BAD DATA (données erronées). Des données d’une chaîne ont été re­
çues d’un fichier ouvert, mais le programme attendait des données nu­
mériques.
BAD SUBSCRIPT (mauvais indice). Le programme essayait de se réfé­
rer à un élément d’un tableau dont le numéro est à l’extérieur des limi­
tes spécifiées dans l’instruction DIM.
CAN’T CONTINUE (impossible de continuer). La commande CONT ne
fonctionne pas, soit parce que le programme n’a jamais été passé
(RUN), soit parce qu’il y a eu une erreur ou une ligne a été éditée.
DEVICE NOT PRESENT (périphérique non présent). Le périphérique
d ’entrée/sortie nécessaire n’était pas disponible pour une instruction
OPEN, CLOSE, CMD, PRINT#, INPUT# ou GET#.
DIVISION BY ZERO (division par zéro). La division par zéro est une ex­
centricité mathématique et n’est pas autorisée.
EXTRA IGNORED (supplément ignoré). Des éléments de données trop
nombreux ont été frappés en réponse à une instruction ENTREE. Seuls
les premiers éléments ont été acceptés.
FILE NOT FOUND (fichier non trouvé). Si vous cherchez un fichier sur
une bande et trouvez une marque de fin de bande (END OF TAPE). Si
vous cherchez sur un disque et qu’aucun fichier portant ce nom n’existe.
FILE NOT OPEN (fichier non ouvert). Le fichier spécifié dans une in­
struction CLOSE, CMD, PRINT#, INPUT# ou GET# doit d’abord être
ouvert (OPEN).
FILE OPEN (fichier ouvert). Il s’agissait d ’une tentative d’ouvrir un fi­
chier en utilisant le numéro d’un fichier déjà ouvert.
FORMULA TOO COMPLEX (formule trop complexe). L’expression de la
chaîne évaluée devrait être partagée au moins en deux parties pour que
le système la traite.
ILLEGAL DIRECT (illégal en mode direct). L’instruction INPUT ne peut
être utilisée qu’avec un programme et non dans le mode direct.
ILLEGAL QUANTITY (quantité illégale). Un numéro utilisé comme argu­
ment d’une fonction d’une instruction est en dehors des limites autori­
sées.

150

LOAD (chargement). Problème avec le programme sur bande.
N EXT WITHOUT FOR (NEXT sans FOR). C’est provoqué soit par des
boucles incorrectement imbriquées, soit par un nom de variable dans
une instruction NEXT qui ne correspond pas à celui d’une instruction
FOR.
NOTINPUT FILE (fichier pas pour entrée). Il s’agit d’une tentative d’entrer
(INPUT) ou obtenir (GET) des données d’un fichier qui a été spécifié pour
être réservé à la sortie.
NOT OUTPUT FILE (fichier pas pour sortie). Il s’agit d’une tentative
d’imprimer (PRINT) des données dans un fichier qui a été spécifié com­
me étant uniquement prévu pour l’entrée.
OUT OF DATA (données épuisées). Une instruction READ a été exécu­
tée, mais il ne subsiste plus de données non lues dans une instruction
DATA.
OUT OF MEMORY (mémoire pleine). Il n’y a plus de RAM disponible
pour le programme ou les variables. Ceci peut également se présenter
lorsque de trop nombreuses FOR ont été imbriqués ou lorsqu’il y a un
trop grand nombre de GOSUB en présence.
OVERFLOW (débordement). Le résultat d’une comparaison est supé­
rieur au nombre maximal autorisé qui est I. . .
REDIM’D ARRAY (tableau redimensionné). Un tableau ne peut être di­
mensionné qu’une fois. Si une variable de tableau est utilisée avant que
le tableau soit dimensionné, une opération DIM (dimensionnement) au­
tomatique est réalisée sur ce tableau, fixant le nombre des éléments à
dix, et tout dimensionnement (DIM) ultérieur provoque cette erreur.
REDO FROM START (recommencer depuis le début). Des données al­
phabétiques ont été frappées pendant une instruction INPUT, alors que
des données numériques étaient attendus. Il suffit de frapper encore une
fois l’entrée de telle manière qu’elle soit correcte et le programme
continue de lui-même.
RETURN WITHOUT GOSUB (RETURN sans GOSUB). Une instruction
RETURN a été rencontrée et aucune commande GOSUB n’a été sortie.
STRING TOO LONG (chaîne trop longue). Une chaîne peut contenir jus­
qu’à 255 caractères.
7SYNTAX ERROR (erreur de syntaxe). Une instruction n’est pas recon­
naissable par le COMMODORE 64. Les parenthèses font défaut ou hors
de parenthèses, mauvaise épellation d’un mot-clé.
TYPE MISMATCH (désaccord de frappe). Cette erreur se présente lors­
qu’un nombre est utilisé à la place d’une chaîne de caractères ou vice
versa.

151

UNDEF’D FUNCTION (fonction non définie). L’on s’est référé à une
fonction définie par l’utilisateur, mais elle n’a jamais été définie en utili­
sant l’instruction DEF FN.
UNDEF’D STATEMENT (instruction non définie). Il s’agit d’une tentative
d’utiliser GOT ou GOSUB ou RUN sur un numéro de ligne qui n’existe
pas.
VERIFY (Vérification). Le programme sur la bande ou sur le disque ne
correspond pas au programme actuellement en mémoire.

152

ANNEXE M

CARTE DES REGISTRES DES SYLPHES
Adresse de base VIC = 53248Dez = D000Hex

Registre #
Dez Hex DB7 DB6 DB5 DB4 DB3 DB2 DB1 DBO

0 0 S0X7 S0X6 S0X5 S0X4 S0X3 S0X2 S0X1 SOXO SYLPHE OX

1 1 S0Y7 SOYO SYLPHE 0 Y

2 2 S1X7 S1X0 SYLPHE 1 X

3 3 S1Y7 S1Y0 SYLPHE 1 Y

4 4 S2X7 S2X0 SYLPHE 2 X

5 5 S2Y7 S2Y0 SYLPHE 2 Y

6 6 S3X7 S3X0 SYLPHE 3 X

7 7 S3Y7 S3Y0 SYLPHE 3 Y

8 8 S4X7 S4X0 SYLPHE 4 X

9 9 S4Y7 S4Y0 SYLPHE 4 Y

10 A S5X7 S5X0 SYLPHE 5 X

11 B S5Y7 S5Y0 SYLPHE 5 Y

12 C S6X7 S6X0 SYLPHE 6 X

13 D S6Y7 S6Y0 SYLPHE 6 Y

14 E S7X7 S7X0 SYLPHE 7 X

15 F S7Y7 S7Y0 SYLPHE 7 Y

16 10 S7X8 S6X8 S5X8 S4X8 S3X8 S2X8 S1X8 S0X8 Octets maximales
des valeurs X

17 11 RC8 EC5 BSM BLNK RSEL YSCL2 YSCL1 YSCLO

18 12 RC7 RC6 RC5 RC4 RC3 RC2 RC1 RCO GRILLE

19 13 LPX7 LPXO Stick lumineux X

20 14 LPY7 LPYO Stick lumineux Y

21 15 SE7 SEO Apparition
Sylphe
(On/Off)

22 16 N.C. N.C. RST MCM CSEL XSCL2 XSCL1 XSCLO

23 17 SEXY7 SEXYO Dilatation
Sylphe Y

153

Registre #
Dez Hex DB7 DB6 DB5 DB4 DB3 DB2 DB1 DBO

24 18 VS13 VS12 VS11 CB13 CB12 CB11 CB10 N.C. Mémoire des
caractères
de l’ECRAN

25 19 IRQ N.C. N.C. N.C. LPIRQ ISSC ISBC RIRQ Demande d ’
interruption

26 1A N.C. N.C. N.C. N.C. MLPI MISSC MISBC MRIRQ MASQUES des
demandes
d ’interruption

27 1B BSP7 BSPO PRIORITE
fond/
sylphe

28 1C SCM7 SCMO SELECTION
DE SYLPHE
MULTICOLORE

29 1D SEXX7 SEXXO DILATATION
SYLPHE X

30 1E SSC7 SSCO COLLISION
sylphe-sylphe

31 1F SBC7 SBCO COLLISION
sylphe-fond

INFO RMATION COULEUF
32 20 Cadre

33 21 Fond 0

34 22 Fond 1

35 23 Fond 2

36 24 Fond 3

37 25 SMCO

38 26
csyipne iviumcoiore

SMC1

39 27 Couleur Sylphe 0

40 28 Couleur Sylphe 1

41 29 Couleur Sylphe 2

42 2A Couleur Sylphe 3

43 2B Couleur Sylphe 4

44 26 Couleur Sylphe 5

45 2D Couleur Sylphe 6

46 2E Couleur Sylphe 7

L’information couleur se trouve dans le tableau à la page 139. En mode m ulti­
colore seulement les codes couleur 0 . . . 7 doivent être utilisés.

154

REGLAGES DE COMMANDE
DE SON DU COMMODORE 64

ANNEXE N

Ce tableau pratique vous fournit les nombres-clé dont vous avez be­
soin dans vos programmes sonores, en fonction des troix voix du
COMMODORE 64 que vous voulez utiliser. Pour introduire ou régler une
commande sonore dans votre programme BASIC, il vous faut des com­
mandes POKE (registre), (contenu) (voir exemple suivant). Chez les re­
gistres divisés vous devez additionner toutes les valeurs, p. ex. montée
moyenne, descente moyenne de la voix 2.

POKE 54272+12, ̂ 46+7^UPOKE54284,87
Adresse de base Registre Frappe Descente

Se rappeler que vous devez régler le volume avant de pouvoir générer
le son. POKE 54296 suivi d’un nombre de 0 à 15 règle le volume des trois
voix.

REGISTRES DE CONTRÔLE DE SONS

Adresse de base du SID: 54272Dez=D400Hex

REGISTRE CONTENU
VOIX 1 2 3

0 7 14 FREQUENCE BASSE (0 ... 255)

1 8 15 FRÉQUENCE HAUTE (0 ... 255)

2 9 16 TAUX D’IMPULSIONS, BASSE FRÉQ. (0 ... 255)

3 10 17
(

TAUX D’IMPULSIONS, HAUTE FREQ. (0 ... 15)

4 11 18 Forme
d ’ondes

BRUIT

129

RECTANGLE

65

DENT DE SCIE

33

TRIANGLE

17

5 12 19 TAUX D’APPUI/RELÂCHEMENT

0*16 (d u re)... 15*16 (doux)

DESCENTE

0 (dure)... 15*16 (doux)

6 13 20

0*16 (m ue t)... 15*16 (fort) 0 (rapide)... 15 (lent)

24 24 24 HAUTEUR: 0 (m ue t)... 15 (hauteur maximale)

155

EXEMPLE: Son de longue durée C-5 en voix 2, forme d’ondes: Triangle

Sl = 54272
POKE SI+24,15:POKE SI+7,207:POKE SI+8,34:POKE SI + 13,240
(Hauteur) (Fréq.basse) (Fréq.haute) (maintenir fort 15*16)

Allumer le son: POKE SI+11,17
Eteindre le son: POKE SI+11,0

D'AUTRES REGISTRES DU SID

En plus le SID possède 4 registres qui n’ont rien à voir avec les sons,
mais à partir desquels le microprocesseur du COMMODORE 64 peut lire
certaines informations.

REGISTRE CONTENU

25 PADDLE X

26 PADDLE Y

27 OSCILLATEUR 3

28 COURBE ENVELOPPANTE 3

Pour lire p. ex. la position des paddles qui sont branchés aux ports de
jeux, vous prenez les commandes:

SI = 54272:X=PEEK(SI+25):Y=PEEK(SI+26)

Les variables X et Y contiennent des valeurs entre 0 et 255, dépendant
de la position des paddles.

Dans les registres 27 et 28 la valeur actuelle de l’oscillateur et du géné­
rateur des courbes enveloppantes de la voix 3 peut être lue, pour créer p.
ex. des générateurs par hasard ou afin d ’influencer d’autres voix à l’aide
de ces valeurs.

156

Essayez ces réglages pour simuler differents instruments
Instrument Forme d’ondes Montée/descente Appui/relâchement Taux d’impulsions

Piano Impulsion 65 9 0 Haute-0, Basse-255
Flûte Triangle 17 96 0
Clavecin Dent de scie 33 9 0
Xylophone Triangle 17 9 0
Orgue Triangle 17 0 240
Accordéon Triangle 17 102 0
Trompette Dent de scie 33 96 0

REMARQUE: Les réglages de montée/descente et d ’appui/relâchement doivent toujours être
mis (POKE) dans votre programme avant que la forme d ’ondes soit mise (POKE).

157

ANNEXE O

VALEUR DES NOTES DE MUSIQUE
Cette annexe contient une liste complète des numéros de notes, de la

note effective et des valeurs à mettre (POKE) dans les registres HI FREQ
et LOW FREQ de la puce sonore pour produire la note indiquée.

No. Note octave Fréquence (Hz) Paramètre octet-Hi octet-Lo

0 C -0 1 6 .4 278 î 22
1 C # -0 17. 3 295 î 39
2 D—0 1 8 .4 313 î 57
3 D # -0 1 9 .4 331 î 75
4 E—0 2 0 .6 351 î 95
5 F—0 2 1 .8 372 î 116
€ F # —0 2 3 . 1 394 î 138
7 G—0 2 4 .5 417 î 161
S G#—0 2 6 .0 4 42 î 186
3 R—0 2 7 .5 468 î 212

10 R#—0 2 9 . 1 496 î 240
1 1 H—0 3 0 .9 526 2 14
12 C - l 3 2 . 7 557 2 45
13 C # - l 3 4 .6 590 2 78
14 0-1 3 6 . 7 625 2 113
15 D#— 1 3 8 .9 662 2 150
16 E— 1 4 1 .2 702 2 190
17 F— 1 4 3 . 7 743 2 231
18 F # — 1 4 6 .2 788 3 20
19 G— 1 4 9 . 0 834 3 66
20 G#— 1 5 1 .9 884 3 1 16
21 R— 1 5 5 . 0 937 3 169
22 R#— 1 5 8 .3 992 3 224
23 H - 1 6 1 .7 1051 4 27
24 C -2 6 5 .4 11 14 4 90
25 C # -2 6 9 . 3 1 180 4 156
26 D—2 7 3 . 4 1250 4 226
27 □ # — 2 7 7 . 8 1325 5 45
28 E -2 8 2 .4 1403 5 123
29 F—2 8 7 .3 1487 5 207
30 F # —2 9 2 .5 1575 6 39
31 G -2 9 y . 0 1669 6 133
32 G#—2 1 0 3 .8 1768 6 232
33 R -2 1 1 0 .0 1873 7 81
34 R # -2 1 1 6 .5 1985 7 193
35 H -2 123 . 5 2 10 3 ÿ 55
36 C—3 1 3 0 .8 2 22 8 8 180
37 C#—3 1 3 8 .6 236 0 9 56
38 D—3 146 . 8 2 50 0 9 196
39 D#—3 155 . 6 2 64 9 10 89
40 E—3 164.8 2807 10 247
41 F—3 1 7 4 .6 297 4 1 1 158
42 F # —3 1 8 5 .0 3150 12 78
43 G—3 196.0 3 33 8 13 10
44 G # -3 2 0 7 .7 3 53 6 13 208
45 R -3 2 2 0 . 0 374 6 14 162
46 R#- 3 2 3 3 . 1 396 9 15 129
47 H -3 2 4 6 .9 4 20 5 16 109
48 C—4 2 6 1 .6 4 4 5 5 17 103
49 C#—4 2 7 7 .2 4 72 0 18 1 12

158

No. Note octave Fréquence (Hz) Paramètre octet-Hi octet-Lo

50 D -4 2 9 3 .7 5001 19 137
51 1*D

3 1 1 . 1 5298 20 178
52 E—4 3 2 9 .6 5613 21 237
53 F—4 3 4 9 .2 5947 23 59
54 F # —4 3 7 0 .0 6301 24 157
55 ü -4 3 9 2 .0 6676 26 20
56 G#—4 4 1 5 . 3 7072 27 160
57 f l - 4 4 4 0 .0 7493 29 69
58 f ì# -4 4 6 6 .2 7939 31 3
59 H—4 4 9 3 . 9 8411 32 219
60 C -5 5 2 3 . 3 8911 34 207
61 C#—5 5 5 4 .4 9441 36 225
62 D—5 5 8 7 . 3 1 0002 39 18
63 D#—5 6 2 2 .3 10597 41 101
64 E—5 6 5 9 . 3 11227 43 219
65 F—5 6 9 8 .5 11894 46 1 18
66 F # —5 7 4 0 .0 12602 49 58
67 G -5 7 8 4 .0 13351 52 39
68 G#—5 8 3 0 .6 14145 55 65
69 ñ -5 8 8 8 .0 14986 53 138
70 ñ # -5 9 3 2 . 3 15877 62 5
71 H- 5 9 8 7 . 8 16821 65 181
72 C—6 1 0 4 6 .5 17821 69 157
73 C#—6 1 1 0 8 .7 18881 73 193
74 D—6 1 1 7 4 .7 2 0004 78 36
75 1D 1 2 4 4 .5 21193 82 201
76 E—6 1 3 1 8 .5 22454 87 182
77 F—6 1 3 9 6 .9 23789 92 237
78 F # -6 1 4 8 0 .0 2 5203 98 115
79 G -6 1 5 6 8 .0 26702 104 78
80 G #-6 1 6 6 1 .2 2 8290 110 130
81 f l - 6 1 7 6 0 .0 29972 117 20
82 fl#—6 1 8 6 4 .7 31754 124 10
S3 H—6 1 9 7 5 .5 33642 131 106
84 C—7 2 0 9 3 .0 35643 139 59
85 C # -7 2 2 1 7 .5 37762 147 130
36 D—7 2 3 4 9 .3 400 0 8 156 72
87 D#—7 2 4 8 9 .0 4 2387 165 147
88 E—7 2 6 3 7 .0 449 0 7 175 107
89 F—7 2 7 9 3 .8 4 7578 185 218
90 F # -7 2 9 6 0 .0 5 0407 196 231
91 G- 7 3 1 3 6 .0 53404 208 156
92 G # -7 3 3 2 2 .4 5 6580 221 4
93 f l—7 3 5 2 0 .0 59944 234 40
94 f l# —7 3 7 2 9 .3 6 3508 248 20

Les valeurs de ce tableau ne sont pas impératives! Si vous utilisez
plusieures voix, vous ferez bien de „désaccorder“ un peu la deuxième
et troisième voix, c’est-à-dire de changer l’octet-Lo du tableau légère­
ment (!). Vous obtiendrez une meilleure sonorité.

159

ANNEXE P

Topogramme du Commodore 64
(★ adresses utiles)

Hex Décimal Description
0000 0 6510 Registre d’acheminement des

données
0001 1 6510 Registre de sortie
0002 2 non utilisé
0003 - 0004 3 - 4 Vecteur de conversion flottant-fixe
0005 - 0006 5 - 6 Vecteur de conversion fixe - flottant
0007 7 Signe de recherche
0008 8 Indicateur du mode „guillemets"
0009 9 Compteur de colonne tabulaire
000A 10 0 = LOAD, 1 = VERIFY
000B 11 Repère du tampon d’entrée de

données/nombre d’éléments
OOOC 12 Indicateur du format standard (DIM)
000D 13 Typ: FF = chaîne, 00 = numérique
000E 14 Type: 80 = nombre entier, 00 = virgule

flottante
000F 15 Indicateur DATA/LIST
0010 16 Elément/lndicateur FNx
0011 17 00 = INPUT, 40 = GET, 98 = READ
0012 18 Préfixe ATN

Indicateur d’égalité pour la comparai­
son avec

0013 19 l’actuel appareil d’entrée/sortie
★ 0014-0015 20-21 Valeur entière

0016 22 Repère sur piles enchaînées tempo­
raires

0017-0018 2 3 -2 4 Dernier vecteur de chaîne temporaire
0019-0021 2 5 -3 3 Pile de chaînes temporaires
0022 - 0025 3 4 -3 7 Secteur pour repère auxiliaire
0026 - 002A 3 8 -4 2 Secteur pour le résultat d ’une multi­

plication
★ 002B - 002C 4 3 -4 4 Repère sur le lancement du BASIC
★ 002D - 002E 4 5 -4 6 Repère sur le début d’une variable
★ 002F - 0030 4 7 -4 8 Repère sur le début des zones
★ 0031 - 0032 4 9 -5 0 Repère sur la fin des zones

160

★ 0033 - 0034 51 -5 2 Repère sur la mémoire de chaînes
(mouvement vers le bas)

0035 - 0036 5 3 -5 4 Repère auxiliaire pour chaînes
★ 0037 - 0038 5 5 -5 6 Repère sur la limite de la mémoire

0039 - 003A 5 7 -5 8 Numéro de l’actuelle ligne BASIC
003B - 003C 5 9 -6 0 Numéro de la ligne BASIC précédente
003D - 003E 61 - 62 Repère sur l’instruction BASIC pour

CONT
003F - 0040 6 3 -6 4 Numéro de l’actuelle ligne DATA
0041 - 0042 6 5 -6 6 Adresse de l’actuel élément DATA

★ 0043 - 0044 6 7 -6 8 Vecteur saut pour entrée
0045 - 0046 6 9 -7 0 Actuel nom de variable
0047 - 0048 71 - 72 Adresse de l’actuelle variable
0049 - 004A 7 3 -7 4 Repère variable pour FOR . . . NEXT
004B - 004C 7 5 -7 6 Mémoire intermédiaire pour repère

BASIC
004D 77 Accumulateur pour symboles compa­

ratifs
004E - 0053 7 8 -8 3 Secteur de travail ayant diverses utili­

sations (repère etc.)
0054 - 0056 8 4 -8 6 Vecteur saut pour fonctions
0057 - 0060 8 7 -9 6 Secteur ayant diverses utilisations

pour opérations numériques
★ 0061 97 Accumulateur virgule flottante#1

(FAC): exponent
★ 0062 - 0065 98-101 Accumulateur virgule flottante#1

(FAC): mantisse
★ 0066 102 Accumulateur virgule flottante#1

(FAC): préfixe
0067 103 Repère pour interprétation polynôme
0069 - 006E 105-110 Accumulateur virgule flottante#2

exposant etc.
006F 111 Comparaison des préfixes accu#1 /

accu #2
0070 112 Position d’une basse valeur accu#1

(d’arrondi)
0071 - 0072 113 - 114 Longueur du tampon-cassette

★ 0073 - 008A 115- 138 CHRGET sous-programme (va cher­
cher un caractère)

007A - 007B 122- 123 Repère BASIC à l’intérieur du sous-
programme

161

008B - 008F 139-143 Valeur de lancement du générateur
aléatoire

★ 0090 144 Octet d’état ST
0091 145 Indicateur pour touches STOP et RVS
0092 146 Constante de temps pour cassette
0093 147 0 = LOAD, 1 = VERIFY
0094 148 Sortie sérielle: indicateur pour

caractère repositionné
0095 149 Caractère repositionné
0096 150 Recevoir EOT de la cassette

(cassette Sync#)
0097 151 Mémoire pour registres

★ 0098 152 Nombre de fichiers ouverts
★ 0099 153 Appareil d’entrée (normal = 0)
★ 009A 154 Appareil de sortie (CMD) (normal = 3)

009B 155 Octet paritaire de la bande
009C 156 Recevoir indicateur pour octet
009D 157 Contrôle de sortie (80 = direct,

00 = RUN)
009E 158 Erreur de la bande/tampon-caractè­

res
009F 159 Erreur de la bande corrigée

★ 00A0 - 00A2 160-162 Horloge interne (HML)
00A3 163 Compteur de bits sériel indicateur

pour EOI
00A4 164 Compteur de cycles
00A5 165 Compteur descendant lors de l’écritu­

re sur cassette
00A6 166 Repère tampon-cassette
00A7 - OOAB 167-171 Indicateurs pour l’écriture et la lecture

de cassettes
OOAC-OOAD 172-173 Repère de lancement du programme
OOAE - OOAF 174-175 Repère de fin du programme
OOBO - 00B1 176-177 Constante de temps pour bande

★ 00B2 - 00B3 178-179 Repère du début du tampon-cassette
00B4 180 Timer bande (1 = positionné), comp­

teur de bits
00B5 181 Bande EOT/RS 232 prochain bit

à émettre
00B6 182 ★ ★★

162

★ 00B7 183

★ 00B8 184
★ 00B9 185
★ OOBA 186
★ OOBB-OOBC 187-188

OOBD 189
OOBE 190

OOBF 191
OOCO 192
00C1-00C2 193-194
00C3-00C4 195-196

★ 00C6 198

★ 00C7 199
00C8 200

00C9 - OOCA 201 - 202

★ OOCB 203
OOCC 204

OOCD 205
OOCE 206
OOCF 207
OODO 208

★ 00D1 -00D 2 209-210
★ 00D3 211

00D4 212

★ 00D5 213

★ 00D6 214

00D7 215

★ 00D8 216
★ 00D9-00F0 217-240

00F1 241

Nombre de caractères dans le nom du
fichier
Numéro actuel logique du fichier
Adresse actuelle secondaire
Appareil actuel
Repère sur le nom du fichier
★ ★★

Nombre pour la lecture/écriture
de blocs restants
Tampon-mots sériel
Indicateur moteur-cassette
Adresse de lancement Entrée/Sortie
Repère sur adresses vectorielles
KERNAL
Nombre de caractères dans le tam­
pon-clavier
Indicateur RVS pour écran
Repère sur la fin de la ligne pour
entrée
Position du curseur d’entrée
(ligne, colonne)
Touche appuyée (64=aucune touche)
Curseur allumé/éteint (0=curseur cli­
gnote)
Compteur pour curseur clignotant
Caractère sur position du curseur
Curseur dans la phase clignotante
Entrée écran/clavier
Repère sur la ligne de l’écran
Repère sur la colonne de l’écran
0=curseur direct, sinon programmé
(QUOTE MODE)
Longueur de l’actuelle ligne de
I’ écran (40/80)
Ligne dans laquelle se trouve le cur­
seur
Dernière touche/total de contrôle/
tampon
Nombre d’insertions non entrées
Table d’enchaînement lignes d’écran
Ligne d’écran factice

163

00F2 242 Marque de lignes d’écran
★ 00F3 - 00F4 242 - 244 Repère sur la couleur d’écran

00F5 - 00F6 245 - 246 Repère sur table de décodage clavier
00F7 - 00F8 247 - 248 RS232 Repère de réception
00F9 - OOFA 249 - 250 RS232 Repère de report

★ OOFB - OOFE 251 - 254 Espace vide à la page 0 pour système
d’exploitation

OOFF 255 Mémoire BASIC
0100-010A 256 - 266 Secteur de travail pour la conversion

de la virgule flottante en ASCII
0100-013E 256-318 Erreur de bande
0100 - 01 FF 256- 511 Secteur de la pile du processeur

★ 0200 - 0258 512-600 Tampon d’entrée BASIC
★ 0259 - 0262 601 -610 Table des fichiers logiques
★ 0263 - 026C 611 -620 Table des numéros d’appareil
★ 026D - 0276 621 - 630 Table des adresses secondaires
★ 0277 - 0280 631 - 640 Tampon-clavier
★ 0281 - 0282 641 - 642 Adresse de lancement de la RAM

pour le système d’exploitation
★ 0283 - 0284 642 - 644 Fin de la RAM pour le système d’ex­

ploitation
0285 645 Indicateur pour dépassement du

temps sur bus sériel
★ 0286 646 L’actuel code de couleur

0287 647 Couleur sous curseur
★ 0288 648 Adresse de mémoire-écran (page)
★ 0289 649 Volume maximal du tampon-clavier
★ 028A 650 Répétition des touches (128=toutes

les touches)
★ 028B 651 Compteur de vitesse de répétition

028C 652 Compteur de retards de répétition
★ 028D 653 Indicateur pour SHIFT/CNTRL

028E 654 Dernière référence SHIFT du clavier
028F - 0290 655 - 656 Repère sur table de décodage clavier

★ 0291 657 Mode SHIFT (0=positionné,
128=bloqué)

0292 658 Déroulement automatique descen­
dant
(0=allumé, #0=éteint)

0293 659 RS232 Registre de contrôle
0294 660 RS232 Registre de commande

164

0285 - 0296 661 - 662 non standard (temps bit)
★ ★★

0297 663 RS232 Registre d’état
0298 664 Nombre de bits à émettre
0299 - 029A 665 - 666 Baud rate
029B 667 RS232 Repère de réceptionr recevoi
029C 668 RS232 Repère d’entrée
029D 669 RS232 Repère de report émettre
029E 670 RS232 Repère de sortie
029F - 02A0 271 - 672 Contient vecteur IRQ pendant

exploitation par cassette
02A1 - 02FF 673 - 767 ★ ★★

★ 0300 - 0301 768 - 769 Vecteur pour messages d’erreurs
0302 - 0303 770 - 771 Vecteur pour lancement à chaud

BASIC
0304 - 0305 772 - 773 Conversion de mots-clés en signes
0306 - 0307 774 - 775 Conversion de signes en mots-clés
0308 - 0309 776 - 777 Exécuter nouvelle commande BASIC
030A - 030B 778 - 779 Aller chercher élément arithmétique
030C 780 Mémoire pour 6502 registre ,,A
030D 781 Mémoire pour 6502 registre „X
030E 782 Mémoire pour 6502 registre ,,Y
030F 783 Mémoire pour 6502 registre ,,P
0310-0313 784 - 787 Saut USR
0314-0315 788 - 789 Arrêt-machine (IRQ) (EA31)
0316-0317 790 - 791 Interruption (FE66) (break interrupt)
0318-0319 792 - 793 Interruption sans masquage (NMI)

(FE47)
031A - 031B 794 - 795 OPEN (F40A) (F34A)
031C - 031D 796 - 797 CLOSE (F291)
031E - 031F 798 - 799 Canal d’entrée (F2C7) (F209)
0320 - 0321 800 - 801 Canal de sortie (F250)
0322 - 0323 802 - 803 Reconstitution de l’éntrée/sortie

(Effacement de tous les canaux
ouverts (F333)

0324 - 0325 804 - 805 INPUT (F157)
0326 - 0327 806 - 807 OUTPUT (FICA)
0328 - 0329 808 - 809 Vérifier touche STOP (F770)

(F6ED)

165

032A-032B 810-811
032C-032D 812-813
032E-032F 814-815
0330-0331 816-817
0332-0333 818-819
0334 - 033B 820-827
033C-03FB 828 - 1019
0400-07FF 1024-2047

(0400-07E7 1024-2023
(07F8-07FF 2040-2047
0800-9FFF 2048-40959
A000 - BFFF 40960 - 49151
COOO - CFFF 49152 - 53247

GET (F13E)
Fermer tous les canaux (F32F)
IRQ-utilisateur (FE66)
Charger RAM (F4A5)
Mémoriser RAM (F5ED)
★ ★★

Tampon-cassette
Mémoire d’écran 1 K
Matrice (vidéo)
Repère pour sprites (lutins)
Mémoire d’utilisateur BASIC
ROM 3 K BASIC
RAM 4 K

1 6 6

167

A
Abréviations 25, 129
ABS 125
Accordéon 163
Addition 23
Adresse 6, 122, 126, 137,155, 158, 160
Adresse sécondaire 122
Adresses utiles 160
Agrandissement 74
Alimentation 2
Amplificateur 6
AND 62, 114, 121, 125
Appui 82, 87, 155
Arithmétique binaire 77
Arrondissement 26
AT N 125

B
BAD DATA 150
BAD SUBSCRIPT ERROR 100, 150
Bande magnétique 110
Banjo 85
Boucles 39, 44
Branchement 2
Branchement de l’antenne 4
Branchement du cassettophone 3
Branchement TV 4
BREAK 113, 125
Bruit 155

c
Câble vidéo 2, 5
Calcu ls 22
Canal 4, 9
CAN ’T CONTINUE ERROR 114, 150
Carte Z80 108
Case 98, 119,151
Cassette 18, 110, 116,142
Celsius 46
Chaîne partielle 127,148
Chaînes de caractères 112
Charger 19
Chiffres aléatoires 49,126
Chiffres binaires 77
Chip vidéo 69, 73, 153
CHR$ 53, 128, 134

Clavecin 85, 157
Clavier 14
CLOSE 110, 117
CLR117
CLR/HOME 15,43, 134
CMD 118
Code ASCII 54, 127, 134
Code chiffres 54
Codes couleurs 58
Codes de l’écran 132
Commandes 114
Commentaire 43, 46, 124
Composer 89
Condition 38, 121
Construction de sylphes 69
CONT 114, 125
Continuer 114, 124
Conversion de programmes 148
Corriger 34
Cosécante inverse 139
Cosinus inverse 139
Cotangente inverse 139
Couleurs 56, 61
Couleurs de l’écran 9, 10, 60, 64
Couleur du cadre 81
Couleur de fond 61,154
Courbe enveloppante 82, 87, 155
Coup de tir 91
Couleur des caractères 56
CP/M 107
Curseur 10, 43

D
DATA 71, 94, 118, 124
DATASSETTE 19, 107
D EFFN 118
DEL 15, 134
Dent de scie 83, 155, 157
Dérivation de fonctions 139
Descente 83, 155
Deux points 53
DEVICE NOT PRESENT 150
DIM 100, 119, 151
Disque 7, 101, 117, 122
Disquette 19
Division 24
DIVISION BY ZERO ERROR 150
Durée d ’un son 84

168

E
Echelle 85
Echo 90
Ecran 9, 29, 62, 63, 123, 137
Ecrire sur bande 110
Editer 15, 34, 59
Effacer 15,34, 115, 118
Egal 38, 114
Elément 113
Elévation à une puissance 24
Entrées 4, 140
Entrée/sortie 140
END 119
Equation 37
Espaces 40
ET 114
Etat normal 17
Exactitude de calcul 26
Exclusive or 125
EXP 126
Explosion 90
EXTRA IGNORED 150

F
Fahrenheit 46
Faux 121
Fente pour modules 2, 141
Fichier 110, 117, 121, 122, 123
FILENOT FOUND 115, 150
FILE NOTOPEN 150
FILEOPEN 150
Fin de la bande 116, 122, 150
Floppy Disque 7, 107, 117, 122
Flûte 157
FN 118, 125
Fonction ASC 54, 127
Fonctions 110, 118, 125, 139
Fonctions de chaînes 127
Fonctions MAT 149
Fonctions mathémathiques 139
Fonctions numériques 125, 139
Forme d ’ondes 83, 155, 157
FORMULA TOO CO M PLEX 150
FOR NEXT 39, 119
Fractions décimales 36
Fréquence 82, 155, 158
FRE 128

G
Générateur de sons 155
Générer un son 81
GET 48, 111, 120
GET# 11, 120

GOSUB 120, 122, 124
GOTO 32, 121, 122
Graphiques 56
Graphiques aléatoires 53
Guillemets 28

H
Hautbois 88, 157
Hauteur du son 82, 86, 155
Heures 113
Horloge interne 113

I
IEEE 88 107
IF . . . THEN 38,52, 121, 122
ILLEGAL DIRECT 150
ILLEGAL QUANTITY 150
Impression formatée 122, 123, 124
Imprimante 7, 101, 118, 122, 123
Index 97
INPUT 45, 121
INPUT# 111, 121
Insertion 15, 34
INST/DEL Touche 15
Instructions 32, 56, 112, 117
Instruments à vent en bois 88
INT 50, 126
Interface 107
Interrompre 46
Interrupteur 2
Inverse 60, 133

J
Jeu de caractères 14, 17

L
Langage machine 124, 127
Lecture de la bande 110
LEFT$ 127
LEN 128
LET 121, 148
Levier de commande 2, 140
Lignes vides 52
LIST 33, 114
Listing 43
LOAD 115
LOAD ERROR 151
LOG 126

169

M
Majuscules/graphiques 14,17,131,134
Mélodies 81
Mémoire couleurs 64,139
Mémoire libre 128
Mémoire à tampon 123
Messages d ’erreurs 150
Michael Row The Boat Ashore 90, 145
MID$ 79, 128
Minuscules/majuscules 14,17,131,134
Minutes 113
Mise en marche 8
Mode calculateur 32
Mode normal 58
Modification de binaire en décimal 78
Modules enfichables 18, 107, 140
Moniteur 4
Most S ignificant Bit 76
Mots-clés 36, 129
Mouvement 69
Moyennes 96
Multiplication 24
Musique 81, 155

N
NEW 115
NEXT 39, 119
NEXT WITHOUT FOR 151
Niveau d ’arrêt 87
No de drives 22
No de ficher logique 122
No de lignes 32
No de périphériques 116, 122
Nombres entiers 50, 112
Nom du programme 19,115
Noms 35
NOT 114, 121
Notation scientifique 26
Notes 89, 158
NOT INPUT FILE 151
NOT OUTPUT FILE 151

O
Occupation de la mémoire 160
Octet 77
ON 58, 122
OPEN 110, 122
Operateurs 112, 113
Operateurs logiques 113, 121
OR 114, 121
Orgue 157

OU 114, 121
OUT OF DATA ERROR 94, 151
OUT OF MEMORY 151
OVERFLOW 151

P
Paddle 2, 7, 140
Parenthèses 27, 114
Place de mémoire 61, 123
Plus grand que 38, 114
Plus grand nombre 11
Plus petit que 38, 114
Plus petit nombre 26
PEEK60, 62, 126
Périphérie 7
Piano 157
POKE60, 126
Pointeur 60, 124
Point-virgule 29, 124
Port utilisateur 3, 140
POS 128
Position HOME 15
PRINT 22,29,57, 123
PRINT# 110, 124
Priorités des ca lcu ls 27
Programmes 18, 31, 143

R
Racine carrée 127
READ 94, 124
Recherche d ’erreurs 9
Rectangle 83, 155
REDO FROM START 151
Registres 69, 78, 82, 153, 155
Registres couleurs 61
Registres de son 155
REM 43, 124
Remarque 43, 44, 124
Résonance 83, 88, 155
RESTORE 96, 124
RETURN 124
RETURN WITHOUT GOSUB ERROR
124, 151
RIGHT$ 128
RND49, 126
RS-232 Interface 3
RUN 32, 116
RUN/STOP Touche 19

170

s
Saut 32
Sauvegarder 18, 20
SAVE 116
Sécante 139
Sécante hyperbolique 139
Sécante inverse 139
Secondes 113
Signal de son 2
Signal vidéo 6
Signe 127
Signe % 112
Signe $ 112
Signe précurseur 27, 127
Sinus 127
Sinus hyperbolique 139
Sinus inverse 139
Software 108
Sortie audio/vidéo 2, 6, 141
Sorties de broches 140
Sortie sérielle 2, 141
Sortie vidéo 6, 141
Soustraction 24
Space (espaces) 44
SPC 128
SQR 127
ST 113
STEP40, 119
Stick lumineux 2, 140
STOP 125
STR$ 128
STRING TOO LONG 151
Sylphes 67, 153
SYNTAX ERROR22, 151
SYS 125

T
TAB 127
Tangente 127
Tangente hyperbolique 139
Tangente inverse 125
Téléviseur 4
THEN38, 52, 120, 121
Tl 113
Timbre 82, 155
TO 40, 119
Touche Q 17, 19, 57

Touche Restore 15
Touche Return 14
Touche Shift 14
Touches couleurs 10
Touches CRSR 15, 43, 59, 134
Touches CTRL 10, 16, 56
Touches de fonction 16, 135
Triangle 83, 155,157
Trémolo 90
Trompète 157
TYPE MISMATCH 151

U
UNDEF’D FUNCTION 152
UNDEFINED STATEMENT ERROR
116, 152
USR 127

V
VAL 128
Valeur absolue 125
Valeur des notes 90
Variables 35, 46,112
Variables à indices 97, 119, 151
Variables alphanumériques 113
Variables de chaînes 30
Variables entières 36, 112
Variables normales 112
VERIFY 117
VERIFY ERROR 152
Virgule 29, 123
Virgule flottante 36, 113
Voix 82, 89, 155
Voyant indicateur 9
Vrai 38, 121

W
WAIT 125

X
Xylophone 157

171

CARTE DE REFERENCE RAPIDE COMMODORE 64
VARIABLES SIMPLES
T y p e N o m

Réel XY

Nombre entierXY%
Chaîne XY$

L im i t e s

± 1.70141183E + 38
±2.93873588E-39
±32767
de 0 à 255 caractères

X est une lettre (A-Z), Y est une lettre ou un chiffre (0 - 9). Les
noms des variables peuvent comporter plus de 2 caractères,
mais les deux premiers sont identifiés.

VARIABLES DES TABLEAUX
T y p e N o m

A une entrée XY(5)
A deux entrées XY(5,5)
A trois entrées XY(5,5,5)
Les tableaux jusqu'à 11 éléments (indice 0 - 10) peuvent être
utilisés si nécessaire. Les tableaux comportant plus de onze
éléments doivent être DIMensionnés.
DIM A(X,Y,Z) Définit les indices maximum pour A:

Réserve de l'espace pour
(X + 1).(Y+1).(Z+1) Eléments démarrant
sur A (0,0,0)

CLR/HOME

SHIFT CLR/HOME
SHIFT INST/DEL

INST/DEL

CTRL

CRSR touches

Touche
COMMODORE

Positionne le curseur en haut à gauche de
l'écran
Efface l'écran
Insère un espace devant l'actuelle position
du curseur.
Efface le caractère devant la position du
curseur.
Lorsqu'elle est utilisée avec une touche
numérique, sélectionne la couleur. Peut
être utilisée dans l'instruction PRINT.
Déplacent le curseur dans la direction
indiquée sur l'écran.
Lorsqu'elle est utilisée avec SHIFT,
sélectionne le mode minuscule et le mode
d'affichage graphique. Lorsqu'elle est
utilisée avec une touche numérique,
sélectionne la couleur.

FONCTIONS DE FORMATAGE
TAB(X) Espace les positions X sur l'écran
SPC(X) X espaces
POS(X) Position du prochain espace sur la ligne

TABLEAUX ET CHAÎNES
OPÉRATEURS ALGÉBRIQUES
= Assigne une valeur à une variable

Négation ou soustraction
î Elévation à une puissance
* Multiplication
/ Division
+ Addition

OPÉRATEURS LOGIQUES

< =
> =
NOT
AND
OR

Egal
Différent de
Inférieur à
Supérieur à
Inférieur ou égal à
Supérieur ou égal à
Logique «PAS»
Logique «ET»
Logique «ÔU» (pas exclu)

COMMANDES DU SYSTÈME
LOAD «NOM»
SAVE «NOM»
LOAD «NOM»,8
SAVE «NOM»,8
VERIFY «NOM»

RUN
RUN xxx

STOP
END
CONT

POKE X,Y

SYS xxxxx

WAIT X,Y,Z

Charge un programme de la bande
Charge un programme sur la bande
Charge un programme du disque
Sauvegarde un programme sur disque
Vérifie que le programme a été
sauvegardé correctement
Exécute un programme
Exécute un programme en partant de la
ligne xxx
Arrête l'exécution
Achève l'exécution
Poursuite de l'exécution du programme à
partir de la ligne où le programme a été
arrêté
Modifie les contenus de l'emplacement X
à la valeur Y
Saute à l’exécution d’un programme en
langage machine en commençant par
xxxxx
Le programme attend jusqu'à ce que les
contenus de l’emplacement X soient
différents de zéro, lorsque EOR vient avec
Y et AND avec Z

FONCTIONS DU SYSTÈME
PEEK(X) Fournit les contenus de l’emplacement de

la mémoire X
USR(X) Passe la valeur de X à une sous-routine

en langage machine
RND(X) chiffre aléatoire
FRE(X) indique la mémoire libre

COMMANDES D’ÉDITION ET DE FORMATAGE
LIST Sort la liste d’un programme complet
LIST A-B Listes de la ligne A à la ligne B
REM Commentaire Le commentaire du message peut être

listé, mais

LEN (X$)
STR$(X)

VAL(X$)

CHR$(X)
ASC(X$)

LEFT$(A$,X)
RIGHT$(A$,X)
MID$(A$,X,Y)

Fournit le nombre de caractères dans X$
Fournit la valeur numérique de X
convertit en une chaîne
Fournit la valeur numérique de X$
jusqu’au premier caratère non numérique
Fournit le caractère du code ASCII X
Fournit le code ASCII pour le premier
caractère de X$
Fournit les premiers caractères X$ de A$
Fournit les derniers caractères X$ de A$
Fournit les caractères Y de A$ en
commençant par le caractère X

COMMANDES D'ÈNTRÉE/SORTIE
INPUT A$ ou A

INPUT «ABC»;A

GET A$ ou A

DATA A, «B», C

READ A$ ou A
RESTORE

PRINT «A = »; A

OPEN 1,4
INPUT #2, A$
GET #2, A$

PRINT #1, A
CLOSE 1

Affiche «?» sur l'écran et attend que
l'utilisateur entre une chaîne ou une va­
leur
Affiche un message et attend que
l'utilisateur entre une valeur.
Attend que l'utilisateur frappe une valeur
de caractère; inutile de frapper RETURN
Initialise un jeu de valeurs qui peut être
utilisé par l'instruction READ
Assigne la valeur DATA suivante à A$ ou A
Réinitialise le pointeur de données pour
redérnarrer la lecture de la liste de don­
nées
Affiche A = ’ et valeur de A.';' supprime les
espaces, ’ ,' tabule les données sur la zone
suivante
ouvre le fichier 1 pour l’imprimante
lit la variable A$ du fichier 2
lit un signe dans la variable A$ du
fichier 2
Imprime A sur l'imprimante
ferme le fichier 1

AVANCEMENT DU PROGRAMME
GOTO X Branche sur la ligne X
IF A = 3 THEN 10 Si l'insertion IF est confirmée, THEN

(alors) réalise l'exécution de la partie
suivante de l’instruction. Si IF n'est pas
confirmé on passe à l’exécution du
numéro de ligne suivant.

FOR A = 1 TO 10 Exécute deux instructions entre FOR et
l'instruction

STEP 2; NEXT NEXT correspondante avec A passant de 1
à 10, par pas de 2. Sauf spécification
contraire, le pas est 1.

NEXT A Définit une fin de boucle. A est optionnel.
GOSUB 2000 Branche la sous-routine en commençant

sur la ligne 2000
RETURN Marque de fin de sous-routine. Retourne à

l'instruction suivant l’instruction GOSUB
la plus récente.

ON X GOT A,B,C Se branche sur le Xème numéro de ligne
de la liste. Si X = 1, se branche sur A etc.

ON X GOSUB A.B.CSe branche sur la sous-routine du Xème
numéro de ligne de la liste.

Réimpression, même partielle, uniquement avec autorisation écrite de Commodore.

Commodore Business
Machines Limited
3370 Pharmacy Avenue
Agincourt
Ontario M1W2K4

Commodore AG
Aeschenvorstadt 57B
4010 Bâle

Commodore SPRL
Av. des Bécassines 30
1160 Bruxelles

S c o m m o d o r e

COMPUTER

