
MMeerrrryy CChhrriissttmmaass
FFrroomm TThhee MMaaggPPii

IISSSSUUEE 0088 -- DDEECC 22001122

AA MMaaggaazziinnee ffoorr RRaassppbbeerrrryy PPii UUsseerrss

hh tt tt pp :: // // wwwwww .. tt hh eemmaaggpp ii .. cc oomm

Raspberry Pi is a trademark of The Raspberry Pi Foundation.
This magazine was created using a Raspberry Pi computer.

TThhiiss IIssssuuee......
•• SSkkuutttteerr
•• NNaannppyy
•• PPii GGaauuggee
•• PPiibbooww
•• CCEESSIILL PPii
•• CC++++
•• AAddaa
•• MMyySSQQLL
•• PPyytthhoonn PPiitt

CCaattcchh SSaannttaa uussiinngg
hhoommee aauuttoommaattiioonn

Win a 512MB
Raspberry Pi

Visit our Kickstarter
http://kck.st/TvkdvG
for printed MagPi!

Welcome to the eighth edition of the MagPi magazine,

It’s Christmas! In this issue we hope to entice you into some festive projects to try after gorging yourself to the brim with
Christmas pudding.

In this month’s edition, we introduce you to a simple home automation project allowing you to control lights and
appliances in your house using the power of the Pi! Just in time to catch Mr Claus! We get your Skutter project in motion
with Morphy’s article on adding wheels to your base. Gordon teaches us how to light up a Xmas tree, we have more on
using the Pi to control an Arduino and Ben describes how to control servos attached to the Pi using the Internet! If this
isn’t enough we have more of the old favourites plus an introduction to SQL.

As per always, we have some great gifts for you to win in our monthly magazine. The MagPi would like to say a big
thank you yet again to PC Supplies who this month has outdone themselves by offering up a 512MB Raspberry Pi for
grabs!

In addition to this we have some exciting news for you this month. As of December 1st, we at the MagPi, are so excited
to be able to offer our readers the possibility of a printed version of all eight issues of the magazine! This is something
which gets constantly requested of us from our readers. All eight issues will be beautifully wrapped up in limited edition
MagPi binder making it a great gift to yourself or any of your loved ones of any age. For more information on this please
visit www.kickstarter.com/projects/themagpi/the-magpi-magazine-from-virtual-to-reality

On behalf of the whole team, thank you again for all your support. We hope you have a fantastic Christmas and we will
see you in the New Year (1st of February). While we have not managed to squeeze it into this issue, you might be
interested in www.xmas4all.co.uk from which you will be able to control their Raspberry Pi powered Christmas lights!

Ash Stone

Chief Editor of The MagPi

A

2

Dig out the toolbox for the next thrilling installment, by Bodge N Hackitt

Control your home with a Raspberry Pi and catch Santa in the act! by Geoff Johnson

Win a 512Mb Raspberry Pi Model B, from PC Supplies UK

The power of Raspberry and the simplicity of Arduino using Nanpy, by Andrea Stagi

Control servos over the internet, by Ben Schaefer

Simon Monk's new book covering basic to full GPIO python examples.

An interview with the designers of the PiBow case, by Chris Stagg

Christmas from the 70's using the CESIL programming language, by Gordon Henderson

Using basic variables and STL strings, by Alex Kerr

The second installment in our Ada programming tutorial, by Luke A. Guest

Get your teeth into some Structured Query Language (SQL), by Richard Wenner

Raspberry Jams and other community events

Creating multiple desktop widgets, by Colin Deady

Contents

3

In the last article we looked at some physical
means of adding motors to a robot and
investigated adapting some motorised
electronic toys as a potential source for robot
bases.

In this article I will begin to explain how you
can build your very own DC electronic motor
driver module and write a basic control
program for it.

We will start by re-examining the standard DC
motor that was covered in the previous article.

To make the motor run forwards we apply a
power source between the + and – terminals
on the motor and to make it run in reverse,
simply swap the power source terminals
around.

The motor driver module we are going to
create will need to be a circuit which is able to
do this swapping around of the power supply
terminals electronically. This can be
accomplished using a “H bridge circuit”.

This diagram shows a simplified version of
such a circuit. Closing switches 1 and 2
effectively connects the positive rail of the
power supply to the + terminal on the motor
and ground to the – terminal and the motor
runs forwards. Alternatively, closing switches
3 and 4 connects the ground to the + terminal
and the positive rail to the – terminal and the
motor runs in reverse.

There is a potentially dangerous situation if
switches 1 and 4 or 3 and 2 are closed. This
would create a short circuit between Power
Supply + and Ground which can be very
problematic to say the least. Care must be
taken when controlling this circuit to ensure
that this situation can never happen.

In reality we can’t have four physical on / off
switches like this as we need to control the
circuit using the GPIO on the Raspberry Pi.

There are electronic solutions to this. One
possibility is the use of electromagnetic relays
to close these “switches”, however the
Raspberry Pi is not able to deliver enough
power from the GPIO to directly activate such
a relay without having something in-between
such as a transistor. Thid leads us to the
second possible solution which is to simply
use some transistors as switches.

The transistor is arguably the most important
electronic invention ever created. Its
development is responsible for everything
from portable music players to the processor
used in the Raspberry Pi.

Part 2
Adding a motorised base

4

We will be looking at NPN type transistors.
This device has three terminals called base,
collector and emitter.

Connecting a power supply across the
collector and emitter allows the transistor to be
used as a switch. Without a connection to the
base, the “internal resistance” of the transistor
is extremely high and the “switch” is off.

If we apply a current to the transistor base
then the internal resistance will drop by a
corresponding amount and more current will
flow from the collector to the emitter.

The transistor is able to vary its internal
resistance very quickly, tens of thousands of
times per second. (It’s this feature that allows
transistors to be used as amplifiers).

The amount that the current affects the
internal resistance of the transistor is defined
by a ratio known as the “DC current gain” and
is referred to as “hFE”.

In our case we want to supply a current to the
base that will make the internal resistance be
zero – just like a closed switch. This is called
“Transistor Saturation” and there is an
equation which tells us the current we need to
apply to the base to make this happen,

IB = IC / hFE

where IC is the collector current and IB is thebase current. In order to find out what this
current is it’s necessary to measure the
current that’s drawn by the motor. This means
an experiment is needed!

For this you will need your motorised base (in
my case it’s the modified Big Trak), a power
supply (some batteries) and a multimeter.

If you don’t own a multimeter yet, they are an
essential tool for anyone who is involved in
electronics and allow you take a wide range of
measurements including voltage, current,
resistance, capacitance and hFE. Maplins sellone for £7.99 (CODE: N20AX).

It is possible to obtain a good multimeter for
under ten pounds from a variety of retailers.

DC motors draw different currents under
different conditions. If a motor is “free-
wheeling” then the motor will draw a
comparatively small current.

Alternatively a “stalled” motor (a motor that is
prevented from turning) will draw an extremely
high current. The harder we make a motor
work, the more current it will draw. In our case
we want to measure the current the motors

draw when our robotic base is trundling along
the floor. One way to accurately obtain this
measurement is to make the base move on
the ground and measure the current that is
being drawn. Here is the method I used with
my Big Trak:

Connect the multimeter in series between the
battery/power supply and one of the motors in
the Big Trak.

The second motor must also be connected to
the power supply and active otherwise only
one motor will try to drive the whole Big Trak
which will result in an inaccurate
measurement. However we only need to
measure the current drawn by one of these
two identical motors.

Add some weight to the Big Trak which
approximates the expected overall weight of
the finished robot. In the case of the Skutter
this includes adding the robot arm.

Complete the circuit between the batteries and
motor, including the multimeter in series as
shown. As the Big Trak rolls along the floor,
take a measurement of the current which is
being drawn. Under the expected load for the
Skutter using this method, one of the two big
trak motors will draw a current of 2.5 Amps.

CAUTION: When motor stalling was tested
the current drawn was approximately 20
Amps.

Continued over page...

5

Each transistor will have a current at the
collector; this current is the same as the
current that’s drawn by the motors. This was
2.5 Amps for the Big Trak (but obviously
would be different if you are basing your robot
on different motors.) We now need to find
some transistors that will behave like switches
when they are passing this current.

Consider again the transistor saturation
equation:

IB = IC / hFE

Two of the values in this equation are now
known. We have 2.5 A for IC and we know thatany GPIO pin on a Raspberry Pi is able to
deliver a maximum of 15 mA (or 0.015 Amps).
We need to find out a minimum value for hFE(current gain) using these two values and this
can be obtained by rearranging the equation
to:

hFE = IC / IB

For a transistor to be able to switch a Big Trak
motor using the GPIO as the trigger this would
be:

hFE = 2.5 / 0.015

Therefore, a transistor with a current gain of at
least 167 is needed. Furthermore, the
transistor must be able to handle 2.5 Amps.
For very short time periods the circuit we
design must also be able to handle up to as
much as 20 Amps as the motors can draw this
much if they are stalled.

One such transistor is a BCU81 (RS
Components 217-8199) which can handle a
continuous current of 3 Amps and has a
minimum current gain (hFE) of 210.

The BCU81 Transistor has a current gain of
210. This means that we only need to supply
12 mA from the GPIO:

IB = IC / hFE

2.5 / 210 = 0.012

We can use a current limiting resistor in series
with the GPIO outputs to make sure that we
are only taking 12 mA. To work out the value
for this resistor we use Ohms law: Resistance
= Voltage / Current.

The GPIO uses 3.3 Volts (referred to as 3v3)
so we can use these values to work out the
necessary values for our current limiting
resistors: 3.3 / 0.012 = 275 Ohms. We would
usually need to factor in a voltage drop in this
equation, but as a transistor has no
appreciable voltage drop when at saturation
this isn’t necessary and this particular
calculation is very simple.

A commonly available resistor value is 270
Ohms. Using this value instead of 275 Ohms
has negligible effect on the GPIO current, so
for simplicity it is acceptable to use this
resistor.

This is then a working H bridge motor
controller circuit for a Raspberry Pi (There is a
health warning that comes with it however,
please take note of it at the end of the article).

There are four diodes added which are
orientated in the opposite direction to the flow
of current. This is because a DC motor will
also generate an electric current, especially as
it is being switched off. This is referred to as
“fly back current” and it can be high enough to
damage the transistors. Having these reverse
biased diodes allows any fly back current to
escape safely.

You can use this circuit if you are using the
same model of Big Trak or if you are using a
base that uses different motors, adapt the
calculations described earlier and find some
suitable resistors and transistors.

An important aspect of this circuit is that the
ground of the Raspberry Pi is being shared
with the ground from the motor power supply.
Having a “common ground” like this means
that we can have two separate devices, which
are powered by two separate power supplies

6

and still working together electronically.

Finally, we can see that in order to drive the
motor forwards we need to turn on GPIO 1
and GPIO 2. To reverse the motor we need to
turn on GPIO 3 and GPIO 4. The “In Control”
articles of the MagPi contain the information
about the programming that’s required to do
this and if you are constructing this circuit then
you may consider designing this program to
be your challenge for next month!

If, like me, you are making a differential robot
that uses two motors then you will need two of
these circuits, one for each motor. That means
that in total you are using up eight of your
GPIOs which doesn’t leave a lot of inputs and
outputs free for the rest of the robot.

At any one time that both motors are being
driven, there will be four GPIO pins delivering
12 mA each. That means a total of 48 mA.
The maximum total current deliverable from
the whole GPIO header at any one time is 51
mA.

Directly driving an H bridge form the GPIO
pins like this is very close to the absolute safe
limits of operation. In order to use any other
output it would first be necessary to set all the
H bridge GPIOs low to safely allow current to
be delivered elsewhere.

Finally, since the current the GPIO is able to
deliver is relatively low we have had to look for
a transistor with a high hFE that can alsohandle 3 Amps. Such transistors are quite
expensive options!

In the next article I am going to describe a way
of vastly increasing the number of GPIOs on
your Raspberry Pi using an inexpensive chip
called the MCP23008 and the I2C bus. This
method will solve the limited current problem
and will allow your robot to have many more
inputs and outputs as well as allow us to use
much cheaper, lower hFE value transistors inour circuit.

#! /usr/bin/python
import time
import RPi.GPIO as GPIO

#----------------------------IMPORTANT ------------------------------
#IF GPIO 0, 1 is "1" THEN GPIO 2, 3 must be "0" ELSE transistor
short circuit !
#--

GPIO.setup(1, GPIO.OUT)
GPIO.setup(2, GPIO.OUT)
GPIO.setup(3, GPIO.OUT)
GPIO.setup(4, GPIO.OUT)

#Drive motor forwards for 3 seconds
GPIO.output(1, True)
GPIO.output(2, True)
time.sleep(3)
#Stop motor
GPIO.output(1, False)
GPIO.output(2, False)
#Drive motor in reverse for 3 seconds
GPIO.output(3, True)
GPIO.output(4, True)
time.sleep(3)
#Stop motor
GPIO.output(3, False)
GPIO.output(4, False)

NOTE: This program would need another set of 4 GPIO to control a second H bridge if the robot is
using two motors.

Article by Bodge N Hackitt
7

11111-000-1-000-1-000-1-000-1-000-1-000-
1-000-1-000-1-0-111-000-1-0-111-000-1-
000-1-0-111-000-1-000-1-0-111-0-111-0-
111-0-111-0-111-000-1-000-1-000-1-0-
111111

$ mkdir gpio
$ cd gpio

$ nano switch.cpp

<CTRL>-
<X> Y

$ g++ -o switch switch.cpp

$./switch 1 on

$ chmod +s switch
$ mv switch /usr/bin/

$ crontab –e

0 * * * * switch 1 on
10 * * * * switch 1 off

$ apt-get install mini-httpd

To see the large range of PCSL brand Raspberry Pi accessories visit

Last Month's Winners!
The 5 winners of the PCSL Raspberry Colour Case are ,

, ,
and .

Congratulations. PCSL will be emailing you soon with details of how to claim all of those
fantastic goodies!

This month's prize is a new 512Mb
Raspberry Pi Model B plus a 1A 5V power
supply and a PCSL Raspberry Pi case!

Both the 2nd and 3rd prize winners will
each receive a PCSL Raspberry Pi case.

For a chance to take part in this month's
competition visit:

Closing date is 20th December 2012.
Winners will be notified in the next issue of
the magazine and by email. Good luck!

The MagPi and PC Supplies Limited are very proud to announce a very
special prize for the winner of this month's competition.

DECEMBER COMPETITION

11

An Arduino board can communicate with the
Raspberry Pi via a serial over USB
connection. This creates a virtual serial
interface, which it uses like a normal interface,
reading and writing to the serial device file. To
begin, attach your Arduino board and type:

$dmesg | tail
[..]usb 1-1.2: Manufacturer: Arduino[..]
[..]cdc_acm 1-1.2:1.0: ttyACM0: USB ACM
device[..]

My Arduino Uno board device is /dev/ttyACM0
and its driver is cdc_acm. Old arduino boards
with a FTDI USB-Serial chip are accessed via
/dev/ttyUSB*:

$ls -l /dev/ttyACM*
crw-rw---T 1 root dialout 166, 0 Nov 5
00:09 /dev/ttyACM0

Ok, now you should add your user to the
'dialout' group to give the required read/write
access, then logout and login again for this to
take effect:

$sudo usermod -a -G dialout YOURUSERNAME

This is important because Nanpy works using
this device file. Nanpy is an open source
project relased under the MIT license, and is
composed of a server part (flashed to your
Arduino which waits for commands on a
serial) and a pure Python library. This library
allows you to communicate with your Arduino
connected via USB using classes and
methods really similar to the Arduino
framework's ones. Behind the scenes when
you create/delete an object or call methods
with Python, Nanpy communicates via USB
and asks the server part to create/delete the
corresponding object and calls methods in

Arduino for you: you can instantiate how many
objects you want without worrying about
deallocation and it's also possible to use in a
multithreading context. Nanpy aims to make
developers' lives easier, giving them a simple,
clear and fast instrument to create prototypes
and scripts interacting with Arduino, saving a
lot of time. To install Nanpy read the
README file. You need to install Arduino on
your laptop or your Raspberry Pi in order to
build the firmware:

$sudo apt-get install arduino

Nanpy is actually under heavy development
and it's only been tested on the Uno board.
You can get Nanpy from the Pypi page
(http://pypi.python.org/pypi/nanpy) or Github
(https://github.com/nanpy).
Let's see Nanpy in action and try to turn on a
LED placed in the 13th pin of the Arduino:

from nanpy import Arduino
Arduino.pinMode(13, Arduino.OUTPUT)
Arduino.digitalWrite(13, Arduino.HIGH)

Arduino provides all the main functions, delay,
analog/digital write and read. No setup or loop
functions, just objects and method calls. In
fact, Nanpy supports all of the main Arduino
methods - LCD, Tone, Stepper and other
libraries. Now let's see how to use our 16x2
text-based LCD on pins 6, 7, 8, 9, 10, 11,
writing a better Hello World script:

from nanpy import Lcd
lcd = Lcd([7, 8, 9, 10, 11, 12],[16, 2])
lcd.printString("Hello World!")

: Raspberry Pi may
not provide enough power to drive your
Arduino, so you might need to connect
Arduino to an external power source.

The power of Raspberry and the simplicity of Arduino
using Python and a simple library: Nanpy.

12

Now I want to show you how to make Arduino
communicate with the external world using the
Raspberry Pi. To understand it we will build a
modern clock, able to measure external
temperature, with an alarm initialised via
bluetooth (using an Android device in this
case) and date and time updated via a ntp
server...

You can find the project with instructions, an
Android app and required components here:
https://github.com/nanpy/eggsamples/tree/ma
ster/synclock. To show how Nanpy works in a
multithreading context, this program creates a
thread for every functionality, writing it all on
the same LCD. In this article I show only the
inner part of every "while True" cycle present
in each "run" method, so I recommend you
follow along with the source code. Let's start
with the main thread, TimeThread, that reads
the time from our ntp server every one second
and stores it in a global variable, milltime:

response = ntplib.NTPClient().request(
'europe.pool.ntp.org',
version=3)

milltime = int(response.tx_time)

To show date and time on the LCD, create a
second thread, ShowTimeThread:
...
self.servo = Servo(12)
...
dt = datetime.fromtimestamp(milltime)
lcd.printString(dt.strftime('%Y/%m/%d'),

0, 0)
lcd.printString(dt.strftime('%H:%M'),

0, 1)
self.servo.write(90 + (30 * self.c))
self.c *= -1

Every second we get the milltime global

variable, trasform it to a readable format and
then print the date and time onto the LCD. As
you can see, printString can be called
specifying the position (column, row) you wish
the string to appear on the LCD. Then we
move the servo motor like a pendulum every
second. We can update the temperature in
another thread. Reading the value of our
temperature sensor from the analog pin 0 and
printing it on the LCD, near the time, every 60
seconds:

temp = ((Arduino.analogRead(0) / 1024.0)
* 5.0 - 0.5) * 100

lcd.printString("- %0.1f\xDFC" % temp,
6, 1)

Ok, now let's see how to communicate with an
Android phone that can set the alarm clock via
bluetooth. I paired my device with the
Raspberry Pi before start, follow this guide to
do that: http://wiki.debian.org/BluetoothUser.
Remember to install python-bluez too. We will
use AlarmClock, a thread-safe class, to save
on disk and get from it the alarm clock value
(look at the code). Then we can start our
bluetooth communication in another thread,
AlarmClockThread:

...Bluetooth init and connection...
cli_sock, cli_info = srv_sock.accept()
cli_sock.send("%d:%d:%d", ck.getAlarm())
try:

while True:
data = cli_sock.recv(3)
if len(data) == 0: break
ck.setAlarm(ord(data[0]),

ord(data[1]),
ord(data[2]))

except IOError:
pass

Our Raspberry Pi acts as a server, waiting for
a bluetooth connection: once this happens, it
sends the alarm clock to our device and waits
for a new value to store. In the TimeThread we
compare the actual time with the alarm value:
if they match we can start another thread,
PlayAlarmThread, playing a C note for 250ms,
five times, using a Tone object through a
speaker controlled via the 4th digital pin. It's
time to wake up!

Start thinking about your own project with
Nanpy, for example trying to bring your old RC
car back to life: youtu.be/NI4PDfVMdgM

Article by Andrea Stagi

13

Controlling hardware that is hooked up to the
Pi is really fun. Controlling hardware from
across town or another state that is hooked up
to the Pi is awesome.

We are controlling five servos; each servo
controls a needle on a chart that can show any
data we choose through printable, modular
backgrounds. We used PHP to create a
webpage that is served up by the Pi. The PHP
makes system calls through the command line
that calls a Python script. In turn, the Python
script controls the movement of the servos
over an I2C bus; it also returns the positions of
the servos by reading values out of a register
that lives on the servo driver. The 16-channel
servo driver is from Adafruit
(http://www.adafruit.com/products/815); it
comes with a nice library that takes care of
low level operations. You need their tutorial for
initial set up and library downloads. We have
provided all our code and templates along with
a help file in a Git repository. This project can
be scaled to control up to 16 servos.

We used the newest Debian Wheezy
distribution to develop the code on a Type B
Rev1 Raspberry Pi. A Rev2 board can be
used with some modifications to the library.

Here is a list of parts you will need to complete
this project:

Adafruit servo driver datasheet:
http://www.adafruit.com/datasheets/PCA9685.pdf

For safety, shutdown your Pi and remove
power before making any connections.

$ sudo shutdown -h now

First, connect to the servos. Most servos come
with mating connectors pre- installed. Plug the
connector into the servo driver, but make sure
the colors match the silkscreen. We used Ch.
1-5

Black = Ground
Red = V+
Yellow = Signal

The Pi cannot source enough current to power
the servos. Thus, you need an external power
supply. We used a wall wart (AC adapter)
from an old +5VDC cell phone charger that we
had on hand. Use the terminal block on the
servo driver to make the V+ and GND
connections.

This fun project shows how to control servo motors over
the internet using a RaspberryPi.

DIFFICULITY: Easy-Medium

14

Lastly, connect the Pi to the servo controller.
This requires four connections from the GPIO
header on the Pi to the header on the servo
driver: 3.3V, GND, SDA
and SCL.

Double check ALL your
connections BEFORE
applying power.

The Vcc and V+ pins are adjacent to
each other on the servo driver, don't mix them
up like we did or you will have a stale Pi!

Plug in your wall wart
and power up your Pi.

If you connected
everything correctly
you will not see or
smell any magic
smoke.

Although not mandatory, it is a good idea to
keep your Pi up to date; start with:

$ sudo apt-get update && sudo apt-get upgrade

Save the files in your home directory:

$ sudo apt-get install git
$ git clone https://github.com/Thebanjodude/PiGauge

Comment out all lines in this file:

$ sudo nano /etc/modprobe.d/raspi-blacklist.conf

Add the I2C device to the kernal. Restart your
Pi then add yourself to the I2C group:

$ sudo modprobe i2c-dev
$ sudo usermod -aG i2c yourusername

$ sudo apt-get install apache2 php5 libapache2-mod-
php5

To find the IP of your Pi (i.e. 192.168.1.10):
$ ip addr
inet: ip.of.your.pi

Go to http://ip.of.your.pi and you should see
the "It Works!" page.

Link the PiGauge Project to www root:

$ cd /var/www
$ sudo ln -s /home/pi/PiGauge

Add apache to the I2C group to allow it to
access the I2C bus. Then restart apache:

$ sudo adduser www-data i2c
$ sudo /etc/init.d/apache2 restart

From your home directory:

$ sudo cp ./Adafruit-Raspberry-Pi-Python-
Code/Adafruit_PWM_Servo_Driver/Adafruit_I2C.py
/usr/local/lib/python2.7/site-packages/

$ sudo cp ./Adafruit-Raspberry-Pi-Python-
Code/Adafruit_PWM_Servo_Driver/Adafruit_PWM_Ser
vo_Driver.py /usr/local/lib/python2.7/site-packages/

You should be ready to go, head over to
http://ip.of.your.pi/PiGauge/ and try it out!

In this code snippet we are adding two
unsigned bytes from the I2C bus to get the
position of a servo.

http://www.nts.com/locations/albuquerque

Continued over page...

15

http://www.nts.com/locations/albuquerque

def print_position(chart_num):
chart_pos = (chip.readU8(8 + chart_num * 4)
+(chip.readU8(9 + chart_num * 4) << 8))
print chart_pos

From Table 3 in the PCA9685 datasheet you
can see that positions are stored in every 4th
and 5th register starting at register 12 and 13.
To get the position of the servo you'll need to
add the contents of the two registers together.
However, adding them as is will get the wrong
answer! Why? Two 8-bit registers are "glued"
together to make a 16-bit register. This is
called concatenation. This means that the first
register contains bits 0-7 and the second
contains 8-15. To properly add them together
you'll need to shift all the bits in the second
register to the left by 8-bits (>>8). Then you'll
be able to add them together for a 16-bit
number. The cool thing about registers is that
the electronics don't care what is in them. It is
completely up to you, the programmer, to
interpret what is inside them.

The whole project revolves around moving
servo motors. The following lines of code are
arguably the most critical. We defined a
function called move_servos(). This function
takes two arguments: which chart number you
want to move and where you want to move it.
pwm.setPWM() comes from the Adafruit
library.

def move_servos(chart_num, chart_pos):
pwm.setPWM(chart_num,0,chart_pos)
time.sleep(0.1)

chart_pos is a number between 170 and 608,
but will vary a little from servo to servo. These
numbers relate to a pulse width time (look up
servo control if you are interested). To make

the software more intuitive we have scaled the
numbers from 0-100 using a transfer function,
then we took it one step further. Since servos
are not exactly linear, we took some data
points, named servo_data, and coded a linear
regression (a fancy word for line of best fit) to
make up for the non-linearities of the servos.
The linear regression function returns the
variables xfer_m and xfer_b that are used
below.

def transfer(chart_percent):
return int(xfer_m * chart_percent + xfer_b)

def inverse_transfer(chart_pos):
return int(round((chart_pos - xfer_b) / xfer_m))

We are big believers in the Agile software
development methodology and incremental
progress. We didn't deploy the use of scrums
or tracking in this little project but we did
make some lightweight unit tests; they are
available in the repository if you find yourself
curious.

Special thanks to Scott Ehlers for patiently
teaching me some new UNIX and PHP skills
and to Tanda Headrick for building the
mechanical display. A very special thanks to
National Technical Systems (NTS) for
sponsoring the project by giving us a bit of
playtime to build a project status display.
Follow the NTS links for more information on
what we do when we aren’t playing with a
Raspberry Pi.

Article by Ben Schaefer

16

http://www.nts.com/locations/albuquerque

http://quick2wire.com

.

http://kck.st/TvkdvG

PPrrooggrraammmmiinngg tthhee RRaassppbbeerrrryy PPii::
GGeettttiinngg SSttaarrtteedd wwiitthh PPyytthhoonn

In a new book from www.raspberrypibook.com,
Simon Monk covers basic Python to in depth GPIO usage

Having bought a Raspberry Pi, chances are
that you will be interested in learning how to
program your new gadget. The book
"Programming the Raspberry Pi: Getting
Started with Python" ,
guides the reader through the process of
learning Python with the Raspberry Pi.

The book is accessible to newcomers to
programming and leads the reader through
the basics of Python, before moving on to
more complex topics such as using the Tkinter
and Pygame libraries as well as programming
for the GPIO connector.

The approach is very much hands-on.
Programming concepts are developed in
example programs, which build from a simple
start in the same way as you would when
writing a program from scratch.

Three chapters of the book are devoted
exclusively to programming and using the
GPIO connector. Various techniques, tools
and prototyping products are surveyed and
explained, including Gertboard, PiFace, Pi
Cobbler and the RaspiRobotBoard.

Two of the hardware chapters are step-by-
step instructions for building and programming
hardware projects using the GPIO connector.
The first project is a simple 7-segment LED
display that displays the Raspberry Pi's
system time. The second is a roving robot that
uses the low cost Magician Chassis rover kit,
along with the RaspiRobotBoard interface
board.

All the source code from the book is available
as a download from the book's website.

The book is available from most major book
sellers from the end of November 2012 and
further details can be found at the book's
website (www.raspberrypibook.com).

17

CESIL - Standing for Computer Education in
Schools Instructional Language was designed
in the 1970's as an attempt to introduce young
people in schools into the world of computer
programming. Without computers in schools,
pupils wrote programs on paper and sent
them into their local computer centre. The
results would come back in the post a week
later!

CESIL is a very simplified assembly language
with a very limited application base, however it
is easy to learn and write simple programs in.
On it's own CESIL is not terribly exciting, so
I've written an interpreter for it in BASIC, and
added on a Christmas tree with programmable
fairy lights! The tree has 4 rows of 8 lamps.
Think of it as a grid 8 wide and 4 high.

A CESIL program is essentially three columns
of text. The first column (which can be blank)
is the label - it's a placeholder in the program
which you can "jump" to from other parts of the
program. The middle column is the operator -
that's the instruction to execute, and the final
column is the operand - this is data for the
instruction to use. This data may be the name
of a label if it's a jump instruction, it may be a
number or it may refer to a named memory
store, or variable.

My extensions to the CESIL machine have
included two more registers (three in total) to
hold the row and column locations of the
lamps and a colour instruction to set the lamp
colour as well as a subroutine facility. The
program can be up to 256 lines and contain up
to 256 variables.

The best way to explain it may be to look at an
actual program. This program reads in a
number from the keyboard and prints a

multiplication table:

mtable:
Multiplication table generator

line
print "Multiplication table generator"
line
print "What table"
in
store table
load 1
store index # Index times

loop: load index
out
print " TIMES "
load table
out
print " = "
mul index # Table was in accumulator
out
line
load index # Add 1 to the index
add 1
store index
sub 11 # Subtract 11 counting 1 to 10
jineg loop # If <0 then jump to loop
halt

Blank lines are allowed and comments start
with the # symbol. Most of this should be self-
explanatory, but with just one accumulator,
everything has to be transfered to and from
memory - the 'store table' instruction stores
the accumulator in a variable called 'table'.

The standard CESIL instructions are:

LOAD - Transfer the number into the
accumulator

STORE - Transfer the accumulator into a
named variable

JUMP - Jump to the given label

Learn how to create a 70's Christmas tree with
CESIL and a Raspberry Pi

20

JINEG - Jump if the accumulator is negative
JIZERO - Jump if the accumulator is zero
ADD - Add a value to the accumulator
SUB - Subtract from the accumulator
MUL - Multiply the accumulator with the value
DIV - Divide the accumulator with the value
HALT - End program
IN - Read a number from the keyboard
OUT - Outputs the accumulator as a number
PRINT - Prints a literal string (in "quotes")
LINE - Prints a new line

Extensions:

JSR - Jump to subroutine
RET - Return from subroutine (to the line

after the last JSR instruction)

Christmas Tree extensions:

TREE - Build a new Christmas Tree
ROW - Transfer the accumulator into the Row

register
COL - Transfer the accumulator into the

Column register
COLOUR - Set the lamp indicated by the Row

and column registers to colour value in the
accumulator

WAIT - Delays for the given number of centi-
seconds (100ths)

Note that you need to execute a WAIT
instruction to actually reflect the colour
changes in the lights. That means that you can
set a lot of lights at once, then when you
execute a WAIT (even a WAIT 0 instruction),
all the lights will change at the same time.

There are 16 standard colours:

0: Off, 1: Navy, 2: Green, 3: Teal, 4: Maroon,
5: Purple,
6: Olive, 7: Silver, 8: Grey, 9: Blue, 10: Lime,
11: Aqua,
12: Red, 13: Pink, 14: Yellow, 15: White

Our Christmas tree has 4 rows of 8 lamps.
Row 0 in the bottom and column 0 is the left
hand side.

The following program fragment will fill the
bottom row with red lamps:

Example program to light the bottom
row with RED lights

tree # Make a tree!
load 0
row # Row 0 - Bottom
load 7 # Count 7 to zero

loop:
store col-count
col
load 12 # Red
colour
load col-count
sub 1
jineg done # Jump If Negative
jump loop

done: wait 1 # Update the lights
halt

First download the RTB BASIC interpreter
from
https://projects.drogon.net/return-to-basic/

Then you can install the CESIL interpreter and
demos, using:

cd
git clone git://git.drogon.net/cesil
cd cesil
rtb
load cesil
run

What I would like to see is people sharing
examples, so please post them on forums,
email them to me (projects@drogon.net) and
what I'll do in January is to have a look at the
ones I've found and send a free Raspberry
Ladder board to the one I think is the most
original, or clever...

Article by Gordon Henderson

21

By Luke A. Guest

with Ada.Text_IO;
use Ada.Text_IO;

procedure Decisions is
Is_Defective : Boolean := False;

begin
if Is_Defective = True then

Put_Line ("Defective");
else

Put_Line ("Not defective");
end if;

end Decisions;

1
2
3
4
5
6
7
8
9
10
11
12

Listing 1: decisions.adb

Line 5

Line 7

if Is_Defective then

if Is_Defective = False then if not

Is_Defective then

Line 8 then else

Line 10 else end if

Line 11

Cool features: Attributes

A BIT OF HISTORY

http://www.oracle.com

Python Widgets using pygame and subprocess
By ColinD - 02 November 2012

import subprocess, os, signal, Tkinter, time

run the widget subprocesses - feel free to add more here!
pImg = subprocess.Popen(["python","widget_image.py"],stdin=subprocess.PIPE)
pRss = subprocess.Popen(["python","widget_rss.py"],stdin=subprocess.PIPE)

send the screen width to the sub processes
r = Tkinter.Tk()
width = r.winfo_screenwidth()
pImg.stdin.write(str(width)+"\n")
pRss.stdin.write(str(width)+"\n")

Run until subprocesses killed with a single CTRL-C
try:

while True:
time.sleep(1)

except KeyboardInterrupt:
os.kill(pImg.pid, signal.SIGKILL)
os.kill(pRss.pid, signal.SIGKILL)

import urllib, Image, pygame, os, sys, time
from bs4 import BeautifulSoup

read stdin from parent process and calculate widget screen position
baseXPos = int(sys.stdin.readline()) - 200 - 10
os.environ['SDL_VIDEO_WINDOW_POS'] = str(baseXPos) + "," + str(30)

display a borderless window to contain the resized image
windowSurface = pygame.display.set_mode((200,200), pygame.NOFRAME)

while True:
try:

soup = BeautifulSoup(
urllib.urlopen('http://apod.nasa.gov/apod/astropix.html'))

APOD has one img tag so we can use find instead of findAll
imgTag = soup.find('img')
imgUrl = imgTag['src']

magpi_widgets.py widget_image.py widget_rss.py

sudo apt-get install python-setuptools
sudo easy_install-2.7 pip
sudo pip install feedparser # parses RSS
sudo pip install beautifulsoup4 # parses HTML
sudo apt-get install python-imaging-tk # provides image manipulation

imgName = os.path.basename(imgUrl)

if the image already exists then do not redownload
if not os.path.exists(imgName):

urllib.urlretrieve("http://apod.nasa.gov/apod/"+imgUrl,imgName)

download, resize and save the image for the widget
imgOriginal = Image.open(imgName)
imgResized = imgOriginal.resize((200, 200), Image.NEAREST)
imgResized.save(imgName)

imgLoad = pygame.image.load(imgName)
windowSurface.blit(imgLoad, (0,0))
pygame.display.update()

if an exception occurs skip the download on this loop
except (IOError, TypeError, RuntimeError):

print "Error downloading, will try again later"

sleep for 8 hours as we do not want to spam the server!
time.sleep(28800)

import pygame, os, sys, feedparser, time
pygame.init()

read stdin from parent process and calculate widget screen position
baseXPos = int(sys.stdin.readline()) - 300 - 10
os.environ['SDL_VIDEO_WINDOW_POS'] = str(baseXPos) + "," + str(430)

create the Pygame window and fill the background with colour blocks
screen = pygame.display.set_mode((300,150))
pygame.draw.rect(screen,(80,140,80),(0,0,300,50))
pygame.draw.rect(screen,(80,80,80),(0,50,300,50))
pygame.draw.rect(screen,(160,160,160),(0,100,300,50))

define the font to output the RSS text
font = pygame.font.SysFont('dejavuserif', 10, True)

while True:
myFeed = feedparser.parse('http://www.raspberrypi.org/feed')

set the window title to be the name of the blog
pygame.display.set_caption(myFeed['feed']['title']+" RSS")

get the articles from the RSS and output the text
for i in range(0, 3):

layerText = pygame.Surface(screen.get_size())
outputText = (myFeed['items'][i].title, myFeed['items'][i].updated,

myFeed['items'][i].link, myFeed['items'][i].description)
clear the surface each loop by filling with transparent pixels
layerText.set_colorkey((0,0,0))
layerText.fill((0,0,0))

j = 0
for line in outputText:

j = layerText.get_rect().y + j + 5
text = font.render(line.rstrip('\n'), 0, (255,255,255))
textpos = text.get_rect()
textpos.x = layerText.get_rect().x + 5
textpos.y = textpos.y+j
layerText.blit(text, textpos)
screen.blit(layerText, (0, 50*i))
pygame.display.flip()
j = j +5

sleep for an hour, do not spam the server!
time.sleep(3600)

The Year of The MagPi

